2个回答
展开全部
金属材料的物理性质
这些特性主要是指熔点,导电性,导热性,密度,耐腐蚀性,磁特性等.
熔点,金属材料在缓慢加热的条件下,由固态开始熔化为液态时的温度,叫该金属的熔点,单位为摄氏度(℃).工业上常用的金属中,锡的熔点最低,为231.9℃,而钨的熔点最高,为3410℃,纯金属有固定的熔点.但大多数合金材料在熔化时,取决于它的成分.比如,铁碳合金,含碳量不同熔点也不同,即它们没有一个固定的熔点.掌握各种金属材料和合金的熔点,对我们金属和合金靶材的熔炼铸造具有很大的影响,并因此影响其应用.
导电性,是金属材料传导电流的能力.衡量金属材料导电能力的指标是电导率.电导率愈大,其导电性能就愈好.导电性以银最好,其次是铜和铝.金属材料的导电性还与温度有关.合金的导电性一般比纯金属差.当材料的横截面积及其他条件相同时,金属的导电性愈好,则电流通过时产生的热量就愈小,因而在输电过程中的电能损失就较小.金属中银的导电性最好,其次是铜铝.
导热性,用烙铁举例.木柄导热系数低,可抵抗热能流动;钻头是由铜制成的,它是良好的热导体,因此可以使存储在其中的热能容易地向下传播到尖端并进入被焊接的工件.这种,金属传导热量的能力叫导热性,导热性能的优劣一般用导热系数来表示金属材料,导热系数又称热导率;金属的导热性愈差,其加热或冷却时,部件表面和内部的温度差就愈大,由此产生的内应力就愈大,就愈易发生裂纹.一般来说,导电性好的材料,其导热性也好.银的导热性最好,其次是铜和铝.
密度,定义为材料每单位体积的质量;国际单位制和中国法定计量单位中,密度的单位为kg / m 3;相对密度是材料密度与4°C以下水的密度相比.
密度和相对密度的公式为:
密度(ρ)= 质量(m)/体积(V)
相对密度(d)= 材料密度/纯水在4°C的密度
利用密度的概念可以解决一系列实际问题,如计算毛坯的质量、鉴别金属材料等.
热膨胀性,就是金属升高温度时体积发生胀大的现象称为金属的热膨胀.衡量热膨胀性的指标称为热膨胀系数,热膨胀系数是指金属温度每升高1℃所增加的长度度与原来长度的比值.例如,在靶材的焊接绑定过程中,被焊的工件由于受热不均匀而产生不均匀的热膨胀,就会导致焊件的变形和焊接应力.
导磁性,金属被磁化或被磁力吸引的性能称为磁性.根据这种性能的不同,通常将金属材料分为铁磁材料、顺磁材料和逆磁材料三种.铁磁材料有铁、钴、镍等,它们在外磁场中能强烈被磁化.顺磁材料有锰、铬、钨、钼等,它们在外加磁场中只是微弱地被磁化.逆磁材料有铜、锡、铅、锌等,它们能抗拒或削弱外加磁场对材料本身的磁化作用.镀膜工业上应用较多的铁磁材料,需要考虑磁场屏蔽问题,尽量提高透磁率以满足溅射要求.
这些特性主要是指熔点,导电性,导热性,密度,耐腐蚀性,磁特性等.
熔点,金属材料在缓慢加热的条件下,由固态开始熔化为液态时的温度,叫该金属的熔点,单位为摄氏度(℃).工业上常用的金属中,锡的熔点最低,为231.9℃,而钨的熔点最高,为3410℃,纯金属有固定的熔点.但大多数合金材料在熔化时,取决于它的成分.比如,铁碳合金,含碳量不同熔点也不同,即它们没有一个固定的熔点.掌握各种金属材料和合金的熔点,对我们金属和合金靶材的熔炼铸造具有很大的影响,并因此影响其应用.
导电性,是金属材料传导电流的能力.衡量金属材料导电能力的指标是电导率.电导率愈大,其导电性能就愈好.导电性以银最好,其次是铜和铝.金属材料的导电性还与温度有关.合金的导电性一般比纯金属差.当材料的横截面积及其他条件相同时,金属的导电性愈好,则电流通过时产生的热量就愈小,因而在输电过程中的电能损失就较小.金属中银的导电性最好,其次是铜铝.
导热性,用烙铁举例.木柄导热系数低,可抵抗热能流动;钻头是由铜制成的,它是良好的热导体,因此可以使存储在其中的热能容易地向下传播到尖端并进入被焊接的工件.这种,金属传导热量的能力叫导热性,导热性能的优劣一般用导热系数来表示金属材料,导热系数又称热导率;金属的导热性愈差,其加热或冷却时,部件表面和内部的温度差就愈大,由此产生的内应力就愈大,就愈易发生裂纹.一般来说,导电性好的材料,其导热性也好.银的导热性最好,其次是铜和铝.
密度,定义为材料每单位体积的质量;国际单位制和中国法定计量单位中,密度的单位为kg / m 3;相对密度是材料密度与4°C以下水的密度相比.
密度和相对密度的公式为:
密度(ρ)= 质量(m)/体积(V)
相对密度(d)= 材料密度/纯水在4°C的密度
利用密度的概念可以解决一系列实际问题,如计算毛坯的质量、鉴别金属材料等.
热膨胀性,就是金属升高温度时体积发生胀大的现象称为金属的热膨胀.衡量热膨胀性的指标称为热膨胀系数,热膨胀系数是指金属温度每升高1℃所增加的长度度与原来长度的比值.例如,在靶材的焊接绑定过程中,被焊的工件由于受热不均匀而产生不均匀的热膨胀,就会导致焊件的变形和焊接应力.
导磁性,金属被磁化或被磁力吸引的性能称为磁性.根据这种性能的不同,通常将金属材料分为铁磁材料、顺磁材料和逆磁材料三种.铁磁材料有铁、钴、镍等,它们在外磁场中能强烈被磁化.顺磁材料有锰、铬、钨、钼等,它们在外加磁场中只是微弱地被磁化.逆磁材料有铜、锡、铅、锌等,它们能抗拒或削弱外加磁场对材料本身的磁化作用.镀膜工业上应用较多的铁磁材料,需要考虑磁场屏蔽问题,尽量提高透磁率以满足溅射要求.
天水铭美实验室设备
2024-11-11 广告
2024-11-11 广告
作为天水铭美实验室设备有限公司的工作人员,化学实验室建设需要的材料主要包括:实验室家具如实验台、通风柜、储存柜等;实验室设备如水槽、烘箱、冰箱及化学分析仪器等;建材如瓷砖、不锈钢板、玻璃器皿等;电器如照明、空调、通风设备等;实验室试剂如酸类...
点击进入详情页
本回答由天水铭美实验室设备提供
展开全部
不同的物理性质使得金属在各种应用中都有其独特的用途:
熔点:熔点高的金属在高温环境下表现更稳定,适用于炉类和航天器件。在材料加工实验中,熔点还影响着加工技术的选择。
导电性:导电性好的金属,如铜和银,广泛应用于电线电缆。在实验中,导电性是评估材料作为电路元件的重要参数。
导热性:导热性好的金属,比如铜和铝,常用于散热器和热交换器。在实验中,导热性能帮助我们了解材料在热管理方面的应用潜力。
密度:不同密度的金属在航空航天、车辆建造等领域有着不同的应用。在实验中,密度影响材料的重量和强度。
耐腐蚀性:耐腐蚀性强的金属,如不锈钢,适用于化学设备和海洋结构。实验中,了解材料的耐腐蚀性对于预测其使用寿命和维护需求至关重要。
磁特性:磁性金属在电机、发电机和储存设备中有重要应用。实验中,磁特性的研究有助于开发新型磁性材料和改进现有技术。
这些物理性质不仅决定了金属材料在实验和实际应用中的表现,也指导我们如何选择和应用这些材料。每种性质都有其独特的用途和重要性。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询