展开全部
∫<π/2, 3π/2>(cosx)^3dx = ∫<π/2, 3π/2>(cosx)^2dsinx
= ∫<π/2, 3π/2>[1-(sinx)^2]dsinx
= [sinx-(1/3)(sinx)^3]<π/2, 3π/2>
= -1+1/3 - 1+ 1/3 = -4/3
= ∫<π/2, 3π/2>[1-(sinx)^2]dsinx
= [sinx-(1/3)(sinx)^3]<π/2, 3π/2>
= -1+1/3 - 1+ 1/3 = -4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫(π/2->3π/2) (cosx)^3 dx
=∫(π/2->3π/2) (cosx)^2 dsinx
=∫(π/2->3π/2) [1-(sinx)^2] dsinx
=[sinx-(1/3)(sinx)^3]|(π/2->3π/2)
=(-1 +1/3) -(1-1/3)
=-2/3 -2/3
=-4/3
=∫(π/2->3π/2) (cosx)^2 dsinx
=∫(π/2->3π/2) [1-(sinx)^2] dsinx
=[sinx-(1/3)(sinx)^3]|(π/2->3π/2)
=(-1 +1/3) -(1-1/3)
=-2/3 -2/3
=-4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询