sinacosb+cosasinb等于多少?
就是正弦两角和公式sin(x+y)=sinxcosy+cosxsiny,由余弦两角和推导的。
sin(a+b)
=cos[π/2-(a+b)]
=cos[(π/2-a)-b]
=cos(π/2-a)cosb+sin(π/2-a)sinb
=sinacosb+cosasinb
积的关系
sinα = tanα × cosα(即sinα / cosα = tanα )
cosα = cotα × sinα (即cosα / sinα = cotα)
tanα = sinα × secα (即 tanα / sinα = secα)
倒数关系
tanα × cotα = 1
sinα × cscα = 1
cosα × secα = 1
sin(a+b)=sinacosb+cosasinb。
以下是正弦定理的相关介绍:
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值得比相等且等于外接圆的直径”,即a/sinA=b/sinB=c/sinC= 2r=D(r为外接圆半径,D为直径)。
第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。
“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。
雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。
以上资料参考百度百科——正弦定理