sinacosb+cosasinb等于多少?

 我来答
帐号已注销
2021-05-10 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

就是正弦两角和公式sin(x+y)=sinxcosy+cosxsiny,由余弦两角和推导的。

sin(a+b)

=cos[π/2-(a+b)]

=cos[(π/2-a)-b]

=cos(π/2-a)cosb+sin(π/2-a)sinb

=sinacosb+cosasinb

积的关系

sinα = tanα × cosα(即sinα / cosα = tanα )

cosα = cotα × sinα (即cosα / sinα = cotα)

tanα = sinα × secα (即 tanα / sinα = secα)

倒数关系

tanα × cotα = 1

sinα × cscα = 1

cosα × secα = 1

教育解题小达人
高能答主

2021-09-04 · 专注教育领域,阳光创作,为大家解除疑惑!
教育解题小达人
采纳数:14 获赞数:11980

向TA提问 私信TA
展开全部

sin(a+b)=sinacosb+cosasinb。

以下是正弦定理的相关介绍:

正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值得比相等且等于外接圆的直径”,即a/sinA=b/sinB=c/sinC= 2r=D(r为外接圆半径,D为直径)。

第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。

“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。

雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。

以上资料参考百度百科——正弦定理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式