设f(x,y)在有界闭区域D上连续,是D的面积,则在D内至少存在一点,使得:
在一个二元函数表示的曲顶柱体中,必然存在一个介于最高点和最低点的点,过该点可以做一个与底面平行的平面,截曲顶柱体侧面形成的柱体体积和原来的曲顶柱体体积相等。
应用:
积分中值定理在应用中所起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。
因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理, 去掉积分号,或者化简被积函数。