现在化学还有什么重大的未解问题吗
1个回答
展开全部
给你个链接你看看 http://www.ngedu.net/info/4450.htm 到了21世纪,数学界、物理学界和生物学界都相继提出了各自领域的重大难题或奋斗目标.但在化学界,一直没有人明确提出哪些是化学要解决的世纪难题. 近年来,在世界范围内出现了淡化化学的思潮.那么化学界果真提不出重大难题吗?有人对这一问题,提出21世纪的四大化学难题供大家一起探讨. 如何建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论? 化学是研究化学变化的科学,所以化学反应理论和定律是化学的第一根本规律.应该说,目前的一些理论方法对描述复杂化学体系还有困难. 因此,建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径等,是21世纪化学应该解决的第一个难题. 对于这一世纪难题,应予首先研究的课题有:(1)充分了解若干个重要的典型的化学反应的机理,以便设计最好的催化剂,实现在最温和的条件进行反应,控制反应的方向和手性,发现新的反应类型,新的反应试剂.(2)在搞清楚光合作用和生物固氮机理的基础上,设计催化剂和反应途径,以便打断CO2, N2等稳定分子中的惰性化学键.(3)研究其它各种酶催化反应的机理.酶对化学反应的加速可达100亿倍,专一性达100%.如何模拟天然酶,制造人工催化剂,是化学家面临的重大难题.(4)充分了解分子的电子、振动、转动能级,用特定频率的光脉冲来打断选定的化学键——选键化学的理论和实验技术. 如何确立结构和性能的定量关系? 这里“结构”和“性能”是广义的,前者包含构型、构象、手性、粒度、形状和形貌等,后者包含物理、化学和功能性质以及生物和生理活性等.这是21世纪化学的第二个重大理论难题. 要优先研究的课题有:(1)分子和分子间的非共价键的相互作用的本质和规律.(2)超分子结构的类型,生成和调控的规律.(3)给体-受体作用原理.(4)进一步完善原子价和化学键理论,特别是无机化学中的共价问题.(5)生物大分子的一级结构如何决定高级结构?高级结构又如何决定生物和生理活性?(6)分子自由基的稳定性和结构的关系.(7)掺杂晶体的结构和性能的关系.(8)各种维数的空腔结构和复杂分子体系的构筑原理和规律.(9)如何设计合成具有人们期望的某种性能的材料?(10)如何使宏观材料达到微观化学键的强度?例如“金属胡须”的抗拉强度比通常的金属丝大一个量级,但还远未达到金属-金属键的强度,所以增加金属材料强度的潜力是很大的.以上各方面是化学的第二根本问题,其迫切性可能比第一问题更大,因为它是解决分子设计和实用问题的关键. 如何揭示生命现象的化学机理? 充分认识和彻底了解人类和生物的生命运动的化学机理,无疑是21世纪化学亟待解决的重大难题之一. 例如:(1)研究配体小分子和受体生物大分子相互作用的机理,这是药物设计的基础.(2)化学遗传学为哈佛大学化学教授Schreiber所创建.他的小组合成某些小分子,使之与蛋白质结合,并改变蛋白质的功能,例如使某些蛋白酶的功能关闭.这些方法使得研究者们不通过改变产生某一蛋白质的基因密码就可以研究它们的功能,为开创化学蛋白质组学,化学基因组学(与生物学家以改变基因密码来研究的方法不同)奠定基础.(3)搞清楚光合作用、生物固氮作用,以及牛、羊等食草动物胃内酶分子如何把植物纤维分解为小分子的反应机理,为充分利用自然界丰富的植物纤维资源打下基础.(4)人类的大脑是用“泛分子”组装成的最精巧的计算机.如何彻底了解大脑的结构和功能将是21世纪的脑科学、生物学、化学、物理学、信息和认知科学等交叉学科共同来解决的难题.(5)了解活体内信息分子的运动规律和生理调控的化学机理.(6)了解从化学进化到手性和生命起源的飞跃过程.(7)如何实现从生物分子(biomolecules)到分子生命(molecular life)的飞跃?如何制造活的分子(Make life),跨越从化学进化到生物进化的鸿沟.(8)研究复杂、开放、非平衡的生命系统的热力学,耗散和混沌状态,分形现象等非线形科学问题. 如何揭示纳米尺度的基本规律 纳米分子和材料的结构与性能关系的基本规律是21世纪的化学和物理需要解决的重大难题之一. 现在中美日等国都把纳米科学技术定为优先发展的国家目标.钱学森先生说,继信息科学之后,纳米科学技术可能引起新一轮的产业革命.在复杂性科学和物质多样性研究中,尺度效应至关重要.尺度的不同,常常引起主要相互作用力的不同,导致物质性能及其运动规律和原理的质的区别. 纳米尺度体系的热力学性质,包括相变和“集体现象”如铁磁性,铁电性,超导性和熔点等与粒子尺度有重要的关系.当尺度在十分之几到10纳米的量级,正处于量子尺度和经典尺度的模糊边界中,此时热运动的涨落和布朗运动将起重要的作用.例如金的熔点为1063℃,纳米金(5-10nm)的融化温度却降至330℃.银的熔点为960.3℃,而纳米银(5-10nm)为100℃. 四大难题破解后的美好前景 经过50-100年的努力,如果解决了我这里提出的化学四大难题,不难设想我们美好的远景: (1)在解决第一和第三难题,充分了解光合作用、固氮作用机理和催化理论的基础上,我们可以期望实现农业的工业化,在工厂中生产粮食和蛋白质,大大缩减宝贵的耕地面积,使地球能养活人口的数目成倍增加. (2)在解决第二和第四难题的基础上,我们可以期望得到比现在性能最好的合金钢材强度大十倍,但重量轻几倍的合成材料,使城市建筑和桥梁建设的面貌完全更新. (3)在充分了解结构与性能关系的基础上,我们能合成出高效、稳定、廉价的太阳能光电转化材料,组装成器件.太阳投射到地球上的能量,是当前全世界能耗的一万倍.如果光电转化效率为10%,我们只要利用0.1%的太阳能,就能满足当前全世界能源的需要. (4)未来的化工企业将是绿色的,零排放的,原子经济的,物质在内部循环的企业. (5)在合成了廉价的可再生的储氢材料和能转换材料的基础上,街上行走的汽车将全部是零排放的电动汽车.我们穿的将是空调衣服. (6)海水淡化将成为重要工业,从而解决人类生存最严重的挑战----淡水资源紧缺问题.
希望采纳
希望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询