高中数学。请问图中的题的第一问怎么做?网上没有答案,请帮我认真写一下。我送你100分。(如果第一问

高中数学。请问图中的题的第一问怎么做?网上没有答案,请帮我认真写一下。我送你100分。(如果第一问我会做了第二问不会做的话,也请顺便帮一下)... 高中数学。请问图中的题的第一问怎么做?网上没有答案,请帮我认真写一下。我送你100分。(如果第一问我会做了第二问不会做的话,也请顺便帮一下) 展开
 我来答
对话的承诺
2015-03-09
知道答主
回答量:18
采纳率:0%
帮助的人:6.1万
展开全部
已知动圆过定点( ,0),且与直线x= 相切,其中p>0.

(1)求动圆圆心C的轨迹方程;

(2)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α、β变化且α+β为定值θ(0<θ<π)时,证明直线AB恒过定点,并求出该定点的坐标.

思路解析:此题是圆锥曲线的综合题,(1)动点的轨迹方程求解时,常常结合其满足的几何特征及常见圆锥曲线的定义来分析比较容易,即常用数形结合的方法.(2)直线过定点问题必须引入参数表示出直线的方程,由直线系方程来解.



(1)解:如图,设M为动圆圆心,(,0)记为F,过点M作直线x=的垂线,垂足为N,由题意知|MF|=|MN|,即动点M到定点F与定直线x=的距离相等,由抛物线的定义,知点M的轨迹为抛物线,其中F(,0)为焦点,x=-为准线,所以轨迹方程为y2=2px(p>0).

(2)证明:如图,设A(x1,y1)、B(x2,y2),

由题意得x1≠x2(否则α+β=π)且x1、x2≠0.

所以直线AB的斜率存在,设其方程为y=kx+b.

显然x1=,x2=.

将y=kx+b与y2=2px(p>0)联立消去x,得ky2-2py+2pb=0.

由韦达定理知y1+y2=,y1·y2=.                                       ①

当θ=,即α+β=时,tanα·tanβ=1.

所以=1,x1x2-y1y2=0,

-y1y2=0,所以y1y2=4p2.

由①知=4p2,所以b=2pk.

因此直线AB的方程可表示为y=kx+2pk,

即k(x+2p)-y=0.所以直线AB恒过定点(-2p,0).

当θ≠,由α+β=θ,得tanθ=tan(α+β)=.

将①式代入上式整理化简可得tanθ=,

所以b=+2pk.

此时,直线AB的方程可表示为y=kx++2pk,

即k(x+2p)-(y-)=0.

所以直线AB恒过定点(-2p,).

所以,当θ=时,直线AB恒过定点(-2p,0),

当θ≠时直线AB恒过定点(-2p,).
追答
那个obj是二分之p
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式