范德蒙德行列式的两种形式

 我来答
天然槑17
2022-05-28 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6413
采纳率:100%
帮助的人:36.5万
展开全部
范德蒙德行列式是如下形式的,
1 1 …… 1
x1 x2 …… xn
x1^2 x2^2 …… xn^2
……
x1^(n-1) x2^(n-1) …… xn^(n-1)
其第一行的元素全部是1,(可以理解为x1,x2,x3……xn的零次方)
第二行的元素则为x1,x2,x3……xn,(即x1,x2,x3……xn的一次方)
以此类推,
第n行的元素为x1^(n-1) x2^(n-1) …… xn^(n-1) (即x1,x2,x3……xn的n-1次方)
这个行列式的值是等于(Xi -Xj)的全体同类因子乘积(n>=i>j>=1)
全体同类因子就是说所有满足(n>=i>j>=1)的Xi -Xj都要乘进去,
比如说X2 -X1、X3 -X1、X3 -X2……Xn -Xn-1
是一个连乘式子
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式