求y=sin(π/6-x)的单调区间
1个回答
展开全部
y=sin(π/6-x)=sin{π-[(π/6)-x]}=sin[x+(5π/6)]
1、增区间.2kπ-π/2≤x+(5π/6)≤2kπ+π/2,即:2kπ-4π/3≤x≤2kπ-π/3,
则增区间是:[2kπ-4π/3,2kπ-π/3] ,其中k是整数
2、减区间.2kπ+π/2≤x+5π/6≤2kπ+3π/2,即:2k-π/3≤x≤2kπ+2π/3,
则减区间是:[2kπ-π/3,2kπ+2π/3],其中k是整数.
1、增区间.2kπ-π/2≤x+(5π/6)≤2kπ+π/2,即:2kπ-4π/3≤x≤2kπ-π/3,
则增区间是:[2kπ-4π/3,2kπ-π/3] ,其中k是整数
2、减区间.2kπ+π/2≤x+5π/6≤2kπ+3π/2,即:2k-π/3≤x≤2kπ+2π/3,
则减区间是:[2kπ-π/3,2kπ+2π/3],其中k是整数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询