什么是韦达定理?

 我来答
P6Q6X6
2022-11-13 · TA获得超过234个赞
知道大有可为答主
回答量:3817
采纳率:100%
帮助的人:34万
展开全部
韦达定理是指一元二次方程中根和系数之间的关系。
韦达定理解析
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
韦达定理关系
设一元二次方程ax+bx+c=0(a,b,c∈R,a≠0)中,两根x1、x2有如下关系:
x+x=-a/b xx=a/c
韦达定理推广
逆定理如果两数α和β满足如下关系:α+β=-a/b,α·β=a/c,那么这两个数α和β是方程ax+bx+c=0(a,b,c∈R,a≠0)的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
韦达定理发展简史
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
韦达定理意义
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。=b-4ac
一元二次方程的根的判别式为(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。
脑栋大开
2022-08-17 · 百度认证:台州市脑栋大开网络科技官方账号
脑栋大开
向TA提问
展开全部

韦达定理的公式为:一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则X1+X2= -b/aX1·X2=c/a,1/X1+1/X2=(X1+X2)/X1·X2,用韦达定理判断方程的根一元二次方程ax²+bx+c=0 (a≠0)中,若b²-4ac<0 则方程没有实数根,若b²-4ac=0 则方程有两个相等的实数根,若b²-4ac>0 则方程有两个不相等的实数根。

韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0它的根记作X1,X2…,Xn我们有右图等式组其中∑是求和,Π是求积。如果二元一次方程在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程在复数集中必有根。

因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根。两端比较系数即得韦达定理。(x1-x2)的绝对值为√(b^2-4ac)/|a|法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。韦达定理在方程论中有着广泛的应用



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式