求数学归纳法证明(a1a2……an)n≤(a1a2……an)n^n
展开全部
用归纳法先证:若a1a2...an=1,则a1+a2..an>=n
如后利用(a1/A)*(a2/A)*...*(an/A)=1证之,其中A=n√(a1a2...an)
当n=1时,显然成立,
假设当n时成立,对于n+1时候,
记u=(a1+a2..an+a_{n+1})/(n+1)(a_{n+1}的n+1是下标)
我们要证明的是u^{n+1}>=a1a2...a_na_{n+1},(1)
因为u是这n+1个数的平均数,所以必定存在某个i,j,使得a_i=
如后利用(a1/A)*(a2/A)*...*(an/A)=1证之,其中A=n√(a1a2...an)
当n=1时,显然成立,
假设当n时成立,对于n+1时候,
记u=(a1+a2..an+a_{n+1})/(n+1)(a_{n+1}的n+1是下标)
我们要证明的是u^{n+1}>=a1a2...a_na_{n+1},(1)
因为u是这n+1个数的平均数,所以必定存在某个i,j,使得a_i=
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询