球体表面积公式 你知道怎么证明吗
展开全部
1、球的表面积S=4πR的平方。
2、推导方法用极限理论设球的半径为R,把球面任意分割为一些“小球面片”,它们的面积分别用△S1,△S2, △S3......△Si...表示,则球的表面积:S=△S1+△S2+△S3+...+△Si+...以这些“小球面片”为底,球心为顶点的“小锥体”的体积和等于球的体积,这些“小锥体”可近似地看成棱锥,“小锥体”的底面积△Si可近似地等于“小锥体”的底面积,球的半径R 近似地等于小棱锥的高hi,因此,第i个小棱锥的体积Vi=hi* △Si,当“小锥体”的底面非常小时,“小锥体”的底面几乎是“平的”,于是球的体积:V≈(h1* △S1+h2* △S2+...hi* △Si+...)/3.又∵hi≈R且S= △S1+△S2+...△Si+...∴可得 V≈RS/3,又∵V=4πRΔ3/4(3分之4倍的πR的立方),∴S=4πR的平方 即为球的表面积公式。
2、推导方法用极限理论设球的半径为R,把球面任意分割为一些“小球面片”,它们的面积分别用△S1,△S2, △S3......△Si...表示,则球的表面积:S=△S1+△S2+△S3+...+△Si+...以这些“小球面片”为底,球心为顶点的“小锥体”的体积和等于球的体积,这些“小锥体”可近似地看成棱锥,“小锥体”的底面积△Si可近似地等于“小锥体”的底面积,球的半径R 近似地等于小棱锥的高hi,因此,第i个小棱锥的体积Vi=hi* △Si,当“小锥体”的底面非常小时,“小锥体”的底面几乎是“平的”,于是球的体积:V≈(h1* △S1+h2* △S2+...hi* △Si+...)/3.又∵hi≈R且S= △S1+△S2+...△Si+...∴可得 V≈RS/3,又∵V=4πRΔ3/4(3分之4倍的πR的立方),∴S=4πR的平方 即为球的表面积公式。
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询