求y=ln(1+x)的n阶导数,给出具体过程,
1个回答
展开全部
y'=1/(1+x)=(1+x)^(-1)
y''=-1*(1+x)^(-2)
y'''=-1*(-2)*(1+x)^(-3)=2*(1+x)^(-3)
y''''=2*(-3)*(1+x)^(-4)=-6*(1+x)^(-4)
所以y^(n)=(-1)^(n+1)*(n-1)!*(1+x)^(-n)
y''=-1*(1+x)^(-2)
y'''=-1*(-2)*(1+x)^(-3)=2*(1+x)^(-3)
y''''=2*(-3)*(1+x)^(-4)=-6*(1+x)^(-4)
所以y^(n)=(-1)^(n+1)*(n-1)!*(1+x)^(-n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询