设f(x)的一个原函数是2sinx/x,则∫xf'(x)dx=

 我来答
黑科技1718
2022-06-22 · TA获得超过5841个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.4万
展开全部
f(x)的一个原函数为sinx/x
所以f(x)=(sinx/x)'
=[(sinx)'*x-sinx*(x)']/x^2
=(xcosx-sinx)/x^2
∫x f'(x) dx
=∫xdf(x)
=xf(x)-∫f(x)dx
=xf(x)-sinx/x+C
=(xcosx-sinx)/x-sinx/x+C
=xcosx/x-sinx/x-sinx/x+C
=cosx-2sinx/x+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式