怎么做道路图片分割

 我来答
1110蒹葭
高能答主

2022-03-10 · 致力于成为全知道最会答题的人
知道小有建树答主
回答量:1413
采纳率:100%
帮助的人:32.9万
展开全部

做道路图片分割的方法如下:

虽然深度神经网络在计算机视觉领域的有效性已经是毋容置疑的了,但是大部分神经网络仍然受限于计算量、存储空间、运算速度等因素,无法应用于实际的计算机视觉任务。

以图像分割为例,前面提到的SegNet的速度已经相当快了,但是仍然远不能达到实时分割的目的。比如道路场景分割任务,至少需要达到10fps,而SegNet的速度只能实现1fps左右。

无法适应实际需要的网络结构是很受限的。

(1) 特征图分辨率

为了减小计算量、增大感受野,许多网络都采用缩小特征图分辨率的结构(比如前面提到的SegNet)。但是,过度缩小特征图分辨率则会造成严重的信息丢失,从而造成分割精度的下降。因此,要尽可能约束下采样的比率。目前被广泛接受的下降比率不超过1/8。那么还要继续增大感受野该怎么办呢?没错,就是用到空洞卷积了。

(2) 提前下采样

直接用原始分辨率的图片作为网络输入的代价是很高的。由于视觉信息中存在大量的冗余,在输入网络之前,可以对输入做一个预处理,也就是先用一层网络将这些信息浓缩,同时缩小空间尺寸。实验证明,这一步的特征图个数不用太多,16与32效果几乎相同。

(3) 解码器规模

前面我们接触到的编解码结构中,解码器与编码器在结构上几乎是完全对等的。这种结构看起来没有问题,但是真的合理吗?其实,编码器的规模可以大一些,因为要用来提取信息;但是解码器本质上只是对编码器结果的细节精调,因此规模可以减小。

(4) 非线性操作

这一点相信很多人在实验中已经发现了,那就是在某些情况下,ReLU的引入并不会对结果产生有利的影响。相反,用PReLU替代反而会更好。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式