合振动方程怎么求 例题解答
1个回答
展开全部
1、物理——合振动运动方程求解
两个同方向,同周期的简谐运动方程为x1=4cos(3πt+π/3)和3cos(3πt-π/6),试求它们的合振动的运动方程.)
2、x=x1+x2=Acos(3πt+φ)
A=√4^2+3^2+2*4*3cos[π/3-(-π/6)]=5
tanφ=[4sin(π/3)+3sin(-π/6)]/[4cos(π/3)+3cos(-π/6)]
φ=23°
x=5cos(3πt+23°)。
两个同方向,同周期的简谐运动方程为x1=4cos(3πt+π/3)和3cos(3πt-π/6),试求它们的合振动的运动方程.)
2、x=x1+x2=Acos(3πt+φ)
A=√4^2+3^2+2*4*3cos[π/3-(-π/6)]=5
tanφ=[4sin(π/3)+3sin(-π/6)]/[4cos(π/3)+3cos(-π/6)]
φ=23°
x=5cos(3πt+23°)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询