1000✖️78➗(8✖️9)怎么简算?
10个回答
2022-08-16
展开全部
回答如下 :
1000✖️78➗(8✖️9) 的数学题目
的简便运算步骤如下 :
( 1 ) = 78000 ➗ 72
( 2 ) = 1083.33( 约等于 1083.33 )
1000✖️78➗(8✖️9) 的数学题目
的简便运算步骤如下 :
( 1 ) = 78000 ➗ 72
( 2 ) = 1083.33( 约等于 1083.33 )
展开全部
7.88×6÷7.88×6
=(7.88÷7.88)×(6×6)
=1×36
=36
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
=(7.88÷7.88)×(6×6)
=1×36
=36
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
7.88×6÷7.88×6
=(7.88÷7.88)×(6×6)
=1×36
=36
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
=(7.88÷7.88)×(6×6)
=1×36
=36
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
7.88×6÷7.88×6
=(7.88÷7.88)×(6×6)
=1×36
=36
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
=(7.88÷7.88)×(6×6)
=1×36
=36
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用户首次输入随着我国经济改革进入深水区,实体企业的超额收益逐渐消失。与此同时,金融行业投资收益率不断上升。社会资金逐渐从实体部门向虚拟部门转移,实体企业金融化程度不断加剧。实体企业金融化不仅不利于企业永续经营,而且影响国家长远发展。因此,了解实体企业金融化成因,解决实体企业过度金融化问题意义深远。实体企业购买金融资产实质上是企业的一种投资行为,股票流动性作为资本市场的生命线对实体企业投融资的影响不容忽视,然而现有研究大多从微观层面探讨公司治理对实体企业金融化的影响。基于此,本文以股票流动性为核心解释变量,通过实证模型研究其在实体企业金融化水平上升过程中的作用。本文主要从“迎合理论”出发,使用2010—2019年A股实体企业上市公司数据,以企业金融资产与总资产的比值衡量实体企业金融化,选取双固定效应模型。首先,研究股票流动性对实体企业金融化的影响;其次,引入投资者情绪变量,探究投资者情绪对实体企业金融化的影响以及投资者情绪在股票流动性影响实体企业金融化的路径中的作用;最后,从异质性的视角观察不同的公司规模、产权性质和金融化水平下,股票流动性对实体企业金融化的影响。研究结果显示,股票流动性与实体企业金融化之间存在显著的正相关关系,即股票流动性上升促进了实体企业金融化的发展;高昂的投资者情绪促进实体企业金融化,低迷的投资者情绪抑制实体企业金融化;投资者情绪在股票流动性影响实体企业金融化的过程中起到了部分中介效应。具体而言,股票流动性提高造成的投资者情绪升高后,企业管理者会迎合投资者偏好去配置金融资产。进一步研究发现,在较大规模的、国有的与金融化程度较高的实体企业中,股票流动性对实体企业金融化的促进作用更为突出。最后,本文根据实证结果,从政府和企业两个角度,提出缓解实体企业金融化的相关建议与意见。
之前,输入框中的文本
之前,输入框中的文本
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询