求极限~lim(x→0)[(1+xsinx)^1/2-cosx]/sin^2(x/2)
1个回答
展开全部
lim(x→0)[(1+xsinx)^1/2-cosx]/sin^2(x/2)
=lim(x→0)[(1+xsinx)^1/2-1+1-cosx]/sin^2(x/2)
=lim(x→0)[(1+xsinx)^1/2-1+2sin^2(x/2)]/sin^2(x/2)
=lim(x→0)[(1+xsinx)^1/2-1]/sin^2(x/2)+2 ([(1+x)^1/n]-1~(1/n)*x )
=lim(x→0)1/2xsinx/sin^2(x/2)+2
=lim1/2x^2/ (x/2)^2+2
=2+2
=4
=lim(x→0)[(1+xsinx)^1/2-1+1-cosx]/sin^2(x/2)
=lim(x→0)[(1+xsinx)^1/2-1+2sin^2(x/2)]/sin^2(x/2)
=lim(x→0)[(1+xsinx)^1/2-1]/sin^2(x/2)+2 ([(1+x)^1/n]-1~(1/n)*x )
=lim(x→0)1/2xsinx/sin^2(x/2)+2
=lim1/2x^2/ (x/2)^2+2
=2+2
=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询