基础知识-拉格朗日乘数法
展开全部
推导 :参考:高等数学下册 第六版 同济大学114页
定义:
要找到函数 z = f (x,y) 在附加条件 ψ(x,y) = 0 下的可能极值点,可以先做拉格朗日函数
*L(x,y) = f(x,y) + λψ(x,y) *
其中 λ 为参数,求对 x 与 y的一阶偏导数,并使之为零,然后与方程 ψ(x,y) = 0 联立起来:
fx(x,y) + λψx(x,y) = 0
fy(x,y) + λψy(x,y) = 0
ψ(x,y) = 0
由这个方程组解出 x, y , λ ,这样得到的(x,y)就是f(x,y)在附加条件 ψ(x,y) = 0 下可能的极值点。
这个方法还可以推广到自变量多于两个而条件多于一个的情形,例如
u = f(x,y,z,t)
在附加条件
ψ(x,y,z,t) = 0,
φ(x,y,z,t) = 0
则拉格朗日函数
L(x,y,z,t) = f(x,y,z,t) + λψ(x,y,z,t) + μφ(x,y,z,t)
其中 λ,μ为参数,分别求其偏导数,并使之为0
具体例子参考 116页
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询