(sinx)^6+(cosx)^6

 我来答
机器1718
2022-10-04 · TA获得超过6864个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:163万
展开全部
s^6+c^6=(s^4)-( sc )^2+c^4 =(1-2( sc )^2) - (sc)^2 =1-3(sc)^2 consider cos4x=cos( 2(2x) )=1-2( sin2x )^2=1-2( 2sc )^2=1-8(sc)^2 8(sc)^2 = 1-cos4x (sc)^2 =(1-cos4x)/8 Hence s^6+c^6=1-3(sc)^2 =1-3(1-cos4x)/8 = (5+3cos4x)/8
cos4x =2cos^2(2x)-1 =2[[2cos^4x-1]^2]-1 =8cos^4x-8cos^2x+1 [(sin^2x)+(cos^2x)]^3 =sin^6x+3sin^4xcos^2x+3cos^4xsin^2x+cos^6x So (sinx)^6+(cosx)^6 =1-3sin^4xcos^2x+3cos^4xsin^2x =1-3sin^2xcos^2x =1-3(1-cos^2x)cos^2x =1-3cos^2x+3cos^4x =5/8+3/8(8cos^4x-8cos^2x+1) =(5/8)+(3/8)cos4x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式