已知f(0)=1,f(2)=4,f '(2)=2,求∫ x f ' '(2x)dx,上限1,下限0. 需过程,谢谢!

 我来答
舒适还明净的海鸥i
2022-07-30 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:69.4万
展开全部
∫xf"(2x)dx
=(1/2)∫xf"(x)d2x
=(1/2)∫xdf'(2x)
=(1/2)xf'(2x)-(1/2)∫f'(2x)dx
=(1/2)xf'(2x)-(1/4)∫f'(2x)d2x
=(1/2)xf'(2x)-(1/4)f(2x)+C
x=1,(1/2)xf'(2x)-(1/4)f(2x)=(1/2)*1*f'(2)-(1/4)*f(2)=1-1=0
x=0,(1/2)xf'(2x)-(1/4)f(2x)=(1/2)*0*f'(0)-(1/4)*f(0)=0-1/4=-1/4
所以定积分=0-(-1/4)=1/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式