显著性差异怎么分析

 我来答
教育学堂666
2022-12-27 · TA获得超过314个赞
知道小有建树答主
回答量:2279
采纳率:100%
帮助的人:35.8万
展开全部

显著性差异分析如下:

1、建立虚无假设,即先认为两者没有差异,用表示。

2、通过统计运算,确定假设成立的概率P。

3、根据P的大小,判断假设是否成立。

显著性差异(significant difference),是一个统计学名词。它是统计学(Statistics)上对数据差异性的评价。通常情况下,实验结果达到0.05水平或0.01水平,才可以说数据之间具备了差异显著或是极显著。

当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的。

比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。

在作结论时,应确实描述方向性(例如显著大于或显著小于)。sig值通常用 P>0.05表示差异性不显著;0.01<P<0.05表示差异性显著;P<0.01表示差异性极显著。

杭州亦博
2024-12-03 广告
(1)宏观经济政策:包括财政、货币、税务政策,对所处行业的扶持或者限制政策(2)社会状况:包括社会的消费习惯或趋势,人口数量及年龄结构分布的变化,主要客户群体状况(3)技术因素:所处行业技术发展状况,技术的可替代性,最新的技术趋势(4) 行... 点击进入详情页
本回答由杭州亦博提供
SPSSAU
2024-01-02 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

假设检验,我们可以把这个词分为“假设”和“检验”来看。

“假设”这个词带了不确定性,常说假设一个事情发生了就怎么样,就是这个事情可能发生,也可能不发生,所以我们从概率这里说起。

生活中很多事件发生看似是随机的、偶然的,比如你打麻将扔骰子,扔到1就是1,扔到6就是6,但实际上这个事件是服从一定概率分布的——均匀分布:扔到1~6这六个数的概率是一样的,都是六分之一。

均匀分布的特点就是事件的各种情况发生的概率是相等的。这种分布是很简单的。然后现在来说另外一种很常见很重要应用很广泛的分布——正态分布。

正态分布是一种随机变量是具有钟形概率分布的随机变量,许多变量的概率分布都服从正态分布。例如:某地区儿童的发育特征,身高。体重等。在同一条件下,产品的质量以平均质量为中心上下摆动,特别差或者特别好的都是少数,多数处于中间状态,正态分布是最重要的一种连续型分布,有着非常广泛的应用。

显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=0.05或α=0.01。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。

p值,也称显著性值或者Sig.值,用于描述某件事情发生的概率情况,其取值范围是0~1,不包括0和1,通常情况下,一般有三个判断标准一个是0.01、0.05以及0.1。在绝大多数情况下,如果p值小于0.01,则说明至少有99%的把握,如果p值小于0.05(且大于或等于0.01),则说明至少有95%的把握,如果p值小于0.1(且大于或等于0.05),则说明至少有90%的把握。

在统计语言表达上,如果p值小于0.01,则称作0.01水平显著,例如,研究人员分析X对Y是否存在影响关系时,如果X对应的p值为0.00(由于小数位精度要求,展示为0.00),则说明X对Y存在影响关系这件事至少有99%的把握,统计语言描述为X在0.01水平上呈现显著性。

如果P值小于0.05(且大于或等于0.01),则称作在0.05水平上显著。例如,研究人员在研究不同性别人群的购买意愿是否有明显的差异时,如果对应的P值为0.01,则说明在0.05水平上呈现出显著性差异,即说明不同性别人群的购买意愿有着明显的差异,而且对此类差异至少有95%的把握。绝大多数研究希望P值小于0.05,即说明研究对象之间有影响、有关系或有差异等。但个别地方需要P值大于0.05,如方差齐性检验时需要P值大于0.05(此处P值大于0.05说明方差不相等)。

SPSSAU操作计算

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式