整式的混合运算
整式的混合运算如下:
整式:是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中被除数不能含有字母。单项式和多项式统称为整式。代数式中的一种有理式。不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。整式包含单项式和多项式(分母含有字母的代数式不是整式)。
整式的计算如下:
1. 单项式乘以单项式,系数与系数相乘的积作为积的系数,相同字母底数不变,指数相加,单独的字母不变,仍作为积的一个因式。
2.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所有的项相加。
3.先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.数字与数字相除,相同字母的进行相除,对于只在被除数中拥有的字母包括字母的指数一起作为商的一个因式。
5.多项式除以单项式,先把这个多项式分别除以这个单项式,再把所得的商相加 。
6.多项式除以多项式的一般步骤:多项式除以多项式,一般用竖式进行演算。
(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;
(2)用除式的第一项去除被除式的第一项,得商式的第一项;
(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),从被除式中减去这个积;
(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式;如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除;
(5)如果被除式能分解因式且有因式与除式中的因式相同的,可以把被除式、除式分解因式。最重要的是必注意各项系数的符号。
整式的四则运算如下:
整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。