6.3除以x等于7求解方程

 我来答
教育小百科达人
2019-02-02 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

6.3÷x=7

6.3=7x

x=6.3÷7

x=0.9

解方程方法:

1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。

2、应用等式的性质进行解方程。

3、合并同类项:使方程变形为单项式。

4、移项:将含未知数的项移到左边,常数项移到右边。

扩展资料:

在一元一次方程中,去分母一步通常乘以各分母的最小公倍数,如果分母为分数,则可化为该一项的其他部分乘以分母上分数的倒数的形式。 

以方程  为例:消除分母上的分数,可化简为:进而得出方程的解。

如果分母上有无理数,则需要先将分母有理化。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 

1、直接开平方法;

2、配方法;

3、公式法;

4、分解因式法。

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
帐号已注销
高粉答主

2021-03-28 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.8万
采纳率:74%
帮助的人:537万
展开全部
6.3÷x=76.3=7xx=6.3÷7x=0.9解方程方法:1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。2、应用等式的性质进行解方程。3、合并同类项:使方程变形为单项式。4、移项:将含未知数的项移到左边,常数项移到右边。在一元一次方程中,去分母一步通常乘以各分母的最小公倍数,如果分母为分数,则可化为该一项的其他部分乘以分母上分数的倒数的形式。 如果分母上有无理数,则需要先将分母有理化。解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、分解因式法。

我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。

形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。

对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。

对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。总结为:若遇稍微复杂点,舍远取近便了然。

当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2020-12-04 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:761万
展开全部

x=0.9


解析过程:


6.3÷x=7


6.3=7x


x=6.3÷7


x=0.9

扩展资料

解方程的方法:

1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。

2、应用等式的性质进行解方程。

3、合并同类项:使方程变形为单项式

4、移项:将含未知数的项移到左边,常数项移到右边

例如:3+x=18

解:x=18-3

x=15

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-11-18
展开全部

 

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-11-18
展开全部

 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式