如图:曲线y=x∧2;与y=x的交点(0,0)(1,1)
所以,S=∫〈0-1〉(x-x²;)dx=〔x^2/2-x^3/3〕〈0-1〉=1/2-1/3=1/6(∫〈0-1〉表示定积分从0到1的积分)
所以,曲线y=x∧2与y=x所围成的图形的面积=1/6
曲线面积
在数学上,一条曲线的定义为:设I为一实数区间,即实数集的非空子集,那么曲线c就是一个连续函数c:I→X的映像,其中X为一个拓扑空间。
直观上,曲线可看成空间质点运动的轨迹。微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。