对y=(cosx)^x求导数. 题目是y等于cosx的x次方
展开全部
y = [cos(x)]^x = e^[xlncos(x)],
y' = e^[xlncos(x)]*[xlncos(x)]' = e^[xlncos(x)]*[lncos(x) + x/cos(x)*(cos(x))']
= e^[xlncos(x)]*[lncos(x) + x/cos(x)*(-sin(x))]
= e^[xlncos(x)]*[lncos(x) - xtan(x)]
= [lncos(x)-xtan(x)]*[cos(x)]^x
y' = e^[xlncos(x)]*[xlncos(x)]' = e^[xlncos(x)]*[lncos(x) + x/cos(x)*(cos(x))']
= e^[xlncos(x)]*[lncos(x) + x/cos(x)*(-sin(x))]
= e^[xlncos(x)]*[lncos(x) - xtan(x)]
= [lncos(x)-xtan(x)]*[cos(x)]^x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询