矩阵的秩为什么等于列秩?

 我来答
帐号已注销
2022-11-12 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

矩阵行向量组的秩 = 矩阵列向量组的秩 = 矩阵的秩,任何情况下都相等。

三个秩其实是从不同方面描述矩阵的秩,对于同一个矩阵,三秩在任意情况下均相等。行秩与列秩比较常用。在计算中,行秩与列秩可用于计算矩阵的秩(高斯消元法)。在证明中,行秩与列秩实质上将矩阵的秩转化为向量组的秩,故可有向量的性质推证矩阵性质。

重要定理

每一个线性空间都有一个基。

对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

矩阵非奇异(可逆)当且仅当它的行列式不为零。

矩阵非奇异当且仅当它代表的线性变换是个自同构。

矩阵半正定当且仅当它的每个特征值大于或等于零。

矩阵正定当且仅当它的每个特征值都大于零。

解线性方程组的克拉默法则。

以上内容参考:百度百科-线性代数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式