什么是“抽屉原理”?
1个回答
展开全部
抽屉原理 原理:多于n个的球以任意方式全部放入n个抽屉中,一定存在一个抽屉,它里面有两个或两个以上的球。 1. 任意11个整数中,一定有两个数,它们的差是10的倍数。 2. 设任意n+1个实数在[0
1)中,求证在它们中存在两个数且它们的差少于1/n。 3. 在前10个自然数中任取6个数,求证:一定存在两个数,其中一个是另一个的整数倍(如果把10改为200,6改为101,则是莫斯科第10届奥林匹克竞赛竞赛题。) 4. 在前91个自然数中任取10个数,求证其中存在两个数,它们相互的比值在[2/3,3/2]内(苏联基辅第49届数学竞赛题)。 5. 任意m个整数,求证:一定可以从找到若干整数,使得它们的和可被m整数(若m=100则是第12届莫斯科奥林匹克数学竞赛题)。 6. 任意给定10自然数,试证明:可以用减、乘两种运算把它们适当连起来,其结果能被1890整除。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有K个笼子和KN+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。
鸽巢原理,又名狄利克雷抽屉原理、鸽笼原理。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有n个笼子和kn+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。 拉姆齐定理是此原理的推广。 抽屉原理 原理一:如果把n+1个元素放入n个 *** 中,则至少有一个 *** 中有2个或2个以上的元素。 原理二:把m个元素任意放入n (m>n) 个 *** 中,则至少有一个 *** 中含有k个或k个以上的元素,其中 (i) k=m/n 当n能整除m; (ii) k=[m/n]+1 当n不能整除m。 原理三:把无穷多个元素放入有限个 *** 里,则至少存在一个 *** 中个有无穷多个元素。 例题 在边长为2的正方形中,任意取5点,求证:至少有两个点之间的距离不大于√2。 在边长为1的正方形中,任意放入9个点,求证:在以这些点为顶点的诸多三角形中,必有一个三角形的面积不超过 1/8。 在直径为5的圆中放入10个点,求证:其中必有两个点的距离小于2。 求证:在任意给出的5个数中,必有3个数,其和能被3整除。 任给12个整数,求证:其中必有两个数,它们的和或者差恰是20的倍数。 证明:从任意给定的n个不同的自然数中,总能找到若干个,使它们的和是n的倍数。 求证:在任意给出的12个数中,一定存在8个整数,记为a1
a2
...
a8使得 (a1-a2)(a3-a4)(a5-a6)(a7-a8)能被1155整除。 已知7个自然数a1
a2
...
a7,把它们重新排列后得到b1
b2
...
b7,求证:(a1-b1)(a2-b2)...(a7-b7)为偶数。 在直角坐标系中,把横纵坐标全是整数的点称为整点。在坐标平面上任意给定5个整点,求证:其中一定有两个点,它们的联线中点仍为整点。 求证:在1
4
7
10
...
100中任选20个数,其中至少有不同的两组数,其和全等于104。 从自然数1
2
...
99
100中,任意取出51个数,求证:其中一定有两个数,它们中的一个是另一个的倍数。 任选6个人,试证:其中必有3人,他们相互认识或都不认识。 一个由21个小正方形组成的3x7矩形,任意给每一个小正方形任意涂上红色或蓝色,证明:不论怎样涂色,总可在图中找出一个矩形,它的4个角上的小正方形的颜色相同。 在平面上给出1993个点,并且从中任取3个点,其中就有两个点的距离小于1。证明:存在一个半径为1的圆,它至少包含了给出的1993个点中的997个点。 图片参考:geo.yahoo/serv?s=382076083&t=1166921882&f=-w63 『抽屉原理』是数学名家狄利克雷的著作,是一种重要的思考方法。关键是构造抽屉求出最少的抽屉
1)中,求证在它们中存在两个数且它们的差少于1/n。 3. 在前10个自然数中任取6个数,求证:一定存在两个数,其中一个是另一个的整数倍(如果把10改为200,6改为101,则是莫斯科第10届奥林匹克竞赛竞赛题。) 4. 在前91个自然数中任取10个数,求证其中存在两个数,它们相互的比值在[2/3,3/2]内(苏联基辅第49届数学竞赛题)。 5. 任意m个整数,求证:一定可以从找到若干整数,使得它们的和可被m整数(若m=100则是第12届莫斯科奥林匹克数学竞赛题)。 6. 任意给定10自然数,试证明:可以用减、乘两种运算把它们适当连起来,其结果能被1890整除。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有K个笼子和KN+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。
鸽巢原理,又名狄利克雷抽屉原理、鸽笼原理。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有n个笼子和kn+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。 拉姆齐定理是此原理的推广。 抽屉原理 原理一:如果把n+1个元素放入n个 *** 中,则至少有一个 *** 中有2个或2个以上的元素。 原理二:把m个元素任意放入n (m>n) 个 *** 中,则至少有一个 *** 中含有k个或k个以上的元素,其中 (i) k=m/n 当n能整除m; (ii) k=[m/n]+1 当n不能整除m。 原理三:把无穷多个元素放入有限个 *** 里,则至少存在一个 *** 中个有无穷多个元素。 例题 在边长为2的正方形中,任意取5点,求证:至少有两个点之间的距离不大于√2。 在边长为1的正方形中,任意放入9个点,求证:在以这些点为顶点的诸多三角形中,必有一个三角形的面积不超过 1/8。 在直径为5的圆中放入10个点,求证:其中必有两个点的距离小于2。 求证:在任意给出的5个数中,必有3个数,其和能被3整除。 任给12个整数,求证:其中必有两个数,它们的和或者差恰是20的倍数。 证明:从任意给定的n个不同的自然数中,总能找到若干个,使它们的和是n的倍数。 求证:在任意给出的12个数中,一定存在8个整数,记为a1
a2
...
a8使得 (a1-a2)(a3-a4)(a5-a6)(a7-a8)能被1155整除。 已知7个自然数a1
a2
...
a7,把它们重新排列后得到b1
b2
...
b7,求证:(a1-b1)(a2-b2)...(a7-b7)为偶数。 在直角坐标系中,把横纵坐标全是整数的点称为整点。在坐标平面上任意给定5个整点,求证:其中一定有两个点,它们的联线中点仍为整点。 求证:在1
4
7
10
...
100中任选20个数,其中至少有不同的两组数,其和全等于104。 从自然数1
2
...
99
100中,任意取出51个数,求证:其中一定有两个数,它们中的一个是另一个的倍数。 任选6个人,试证:其中必有3人,他们相互认识或都不认识。 一个由21个小正方形组成的3x7矩形,任意给每一个小正方形任意涂上红色或蓝色,证明:不论怎样涂色,总可在图中找出一个矩形,它的4个角上的小正方形的颜色相同。 在平面上给出1993个点,并且从中任取3个点,其中就有两个点的距离小于1。证明:存在一个半径为1的圆,它至少包含了给出的1993个点中的997个点。 图片参考:geo.yahoo/serv?s=382076083&t=1166921882&f=-w63 『抽屉原理』是数学名家狄利克雷的著作,是一种重要的思考方法。关键是构造抽屉求出最少的抽屉
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光派通信
2024-09-03 广告
2024-09-03 广告
电光开关的工作原理主要基于电光效应。这一效应指的是电光材料的折射率会随外加电压的变化而呈现线性或非线性关系的变化。通过调节外加电压,电光开关能有效控制输入光通过波导的相位变化量,进而使输出光发生相长或相消干涉,最终实现对输出光的开关作用。这...
点击进入详情页
本回答由光派通信提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询