圆锥曲线的性质
1个回答
展开全部
圆锥曲线的性质,就是圆锥曲线的第二定义,其内容是:动点到定点的距离与到定直线的距离之比为一常数e,当0<e<1时,动点的轨迹为椭圆,当e=1时,动点的轨迹为抛物线,当e>1时,动点的轨迹为双曲线。
其中e被称为离心率,定点称为焦点,定直线称为准线,焦点到准线的距离称为焦准距,焦点到动点的线段称为焦半径。如果我们以焦点为原点,过焦点垂直于准线的直线为x轴,建立直角坐标系,便可以由此得出圆锥曲线的统一直角坐标方程。
几何观点
用一个平面去截一个二次锥面,得到的交线就称为圆锥曲线(conic sections)。
通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。具体而言:
1) 当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2) 当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3) 当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。
东莞大凡
2024-11-19 广告
2024-11-19 广告
作为东莞市大凡光学科技有限公司的工作人员,对于标定板棋格尺寸的问题,可以提供以下信息:标定板棋格尺寸因具体应用和需求而异。我们公司提供多种尺寸的棋盘格标定板,例如63*63mm等常见规格,同时也支持定制服务,以满足不同客户的需求。大尺寸标定...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询