设函数fx=e的x次方-1-x-ax 若当x≥0,f(x)≥0,求a 的取值范围?

 我来答
舒适还明净的海鸥i
2022-10-29 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.5万
展开全部
f(x)=e^x-1-x-ax
f'(x)=e^x-(a+1)
若a+1≤0,也即a≤-1,则f'(x)>0,f(x)严格单增,故只需f(0)≥0,1-1-(a+1)*0≥0,得0≥0恒成立.故a≤-1时满足题意.
若a+1>0,也即a>-1,则方程f'(x)=e^x-(a+1)=0有实数解x=ln(a+1).
此时f''(x)=e^x=e^[ln(a+1)]=a+1>0,故f[ln(a+1)]为f(x)在区间[0,+∞)上的极小值.因此只需f[ln(a+1)]≥0,也即e^[ln(a+1)]-1-(a+1)ln(a+1)=a+1-1-(a+1)ln(a+1)=a-(a+1)ln(a+1)≥0
也即ln(a+1)-a/(a+1)≤0
考虑函数g(a)=ln(a+1)-a/(a+1),a>-1,显然g(0)=0,g'(a)=1/(a+1)-1/(a+1)^2=a/(a+1)^2.
若a>0,则g'(a)>0,当a>0时有g(a)>g(0)=0,与g(a)≤0矛盾.
当-1,5,f(x)=e^x-1-x-ax = e^x - (1+x+ax)
当x=0, e^x=1, f(x)=0
设 y1=e^x, y2=ax+x+1=(a+1)x+1
f(x) = y1 - y2 >= 0 即 y1 >= y2
当 x=0, y1 = 1, y2 = 1, y1 的切线斜率为 e^0 = 1,
如果 y2 的直线斜率大于1, 则 y...,2,求导,讨论其在取值范围内的,增减性,极小指点,函数大于零。还有就是为曾函数时,当X为零时。函数值为零,a的值。,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式