验证函数y=Ce^(-x)+x+1是微分方程y'=y+x的通解,并求满足初始条件y|(x=0)=2特解,

 我来答
科创17
2022-08-05 · TA获得超过5883个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:172万
展开全部
微分方程y'=y+x的通解是y=Ce^(x)-x-1
因为:y=Ce^(x)-x-1,所以y'=Ce^(-x)-1,所以:y'=y+x,
故微分方程y'=y+x的通解是y=Ce^(x)-x-1.
因为y|(x=0)=2,代入求得:C=3,满足初始条件y|(x=0)=2特解是y=3e^(x)-x-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式