方程组求解

请问怎样求以下方程组的解?-x^2-(y-1)^2+1<=02(1-z)x=0-2z(y-1)-cos(y)=0z(-x^2-(y-1)^2+1)=0z>=0-2<=y<... 请问怎样求以下方程组的解?

-x^2-(y-1)^2+1<=0
2(1-z)x=0
-2z(y-1)-cos(y)=0
z(-x^2-(y-1)^2+1)=0
z>=0
-2<=y<=2(弧度)
x,z是实数

好像解还蛮多组的,请您可以解释一下您的思路和怎样确定没有找漏解的呢?
谢谢!
展开
圭扬mK
2010-11-23 · TA获得超过1.4万个赞
知道大有可为答主
回答量:2314
采纳率:100%
帮助的人:3739万
展开全部
因为有-x^2-(y-1)^2+1<=0和z>=0
z(-x^2-(y-1)^2+1)=0为一非正和一非负数的乘积所以要求满足
-x^2-(y-1)^2+1=0 或 z=0
情况1:-x^2-(y-1)^2+1=0
因为2(1-z)x=0 1-z=0或x=0
情况1.1:x=0,那么-(y-1)^2+1=0
y-1=±1
y=0或y=2
代入这个式子:-2z(y-1)-cos(y)=0
若y=0,则有-2z*(-1)-1=0 z=1/2
一组解是(x=0,y=0,z=1/2)
若y=2,则有-2z-cos2=0
z=-cos2/2>0
所以是另一组解(x=0,y=2,z=-cos2/2)
情况1.2:1-z=0 z=1
-x^2-(y-1)^2+1=0;
-2(y-1)-cos(y)=0;这是一个关于y的方程 可以求出一解
再将求出的y值代入上一式子可求出x。但这里我无法接出具体的y值。
y约等于0.58左右。这也是一组解。
情况2:z=0
因为z=0所以2(1-z)x=0可推出x=0,
那么就有
-x^2-(y-1)^2+1<=0;
-2z(y-1)-cos(y)=0;
两式可化简为
-(y-1)^2+1<=0;
-cos(y)=0;
所以y=±π/2
又因为-(y-1)^2+1<=0
所以y=-π/2被舍去
所以又有一组解(x=0,y=π/2,z=0)
综上所述
一共有四组解分别是
(x=0,y=0,z=1/2)
(x=0,y=2,z=-cos2/2)
(x=0,y=π/2,z=0)
以及一组解的形式为
-x^2-(y-1)^2+1=0
-2(y-1)-cos(y)=0
这里y约等于0.58 x约等于正负0.81
z=1
即(x=±0.81,y=0.58,z=1)
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式