矩阵可逆的必要条件是什么?
展开全部
矩阵可逆的充分必要条件:AB=E;A为满秩矩阵(即r(A)=n);A的特征值全不为0;A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。
A等价于n阶单位矩阵;A可表示成初等矩阵的乘积;齐次线性方程组AX=0 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无关;任一n维向量可由A的行(列)向量组线性表示。
矩阵可逆的充分必要条件:
AB=E;
A为满秩矩阵(即r(A)=n);
A的特征值全不为0;
A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);
A等价于n阶单位矩阵;
A可表示成初等矩阵的乘积;
齐次线性方程组AX=0 仅有零解;
非齐次线性方程组AX=b 有唯一解;
以上内容参考:百度百科-矩阵可逆
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询