矩阵可逆的必要条件是什么?

 我来答
帐号已注销
2022-10-25 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

矩阵可逆的充分必要条件:AB=E;A为满秩矩阵(即r(A)=n);A的特征值全不为0;A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。

A等价于n阶单位矩阵;A可表示成初等矩阵的乘积;齐次线性方程组AX=0 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无关;任一n维向量可由A的行(列)向量组线性表示。

矩阵可逆的充分必要条件:

AB=E;

A为满秩矩阵(即r(A)=n);

A的特征值全不为0;

A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);

A等价于n阶单位矩阵;

A可表示成初等矩阵的乘积;

齐次线性方程组AX=0 仅有零解;

非齐次线性方程组AX=b 有唯一解;

以上内容参考:百度百科-矩阵可逆

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式