函数f(x)在点x0处可导是f(x)在点x0处可微的( )条件.
1个回答
展开全部
解题思路:一元函数可导与可微等价.
由函数在某点可导,根据定义有k=f′(x0)=lim△x→0f(x0+△x)−f(x0)△x①由①得,△y=k△x+O(△x)(△x→0),即是可微的定义.故可微与可导等价.
点评:本题考点: 可微的必要条件和充分条件. 考点点评: 本题考察一元函数可微与可导的等价性.
由函数在某点可导,根据定义有k=f′(x0)=lim△x→0f(x0+△x)−f(x0)△x①由①得,△y=k△x+O(△x)(△x→0),即是可微的定义.故可微与可导等价.
点评:本题考点: 可微的必要条件和充分条件. 考点点评: 本题考察一元函数可微与可导的等价性.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询