如何求两平行线之间的距离?
1个回答
展开全部
设圆的方程为
(x-a)^2 + (y-b)^2 = r^2
首先,过圆上一点(x1,y1)的切线方程为
(x1-a)(x-a) + (y1-b)(y-b) = r^2
同理,过圆上一点(x2,y2)的切线方程为
(x2-a)(x-a) + (y2-b)(y-b) = r^2
如果(x3,y3)是圆外一点,它向圆引切线的切点分别为(x1,y1), (x2,y2),那么把(x3,y3)代入上面两个直线方程均成立,也就是说,(x1,y1),(x2,y2)同时满足直线方程
(x-a)(x3 - a) + (y-b)(y3-b) = r^2
由于两点确定了一条直线,所以上式直接给出了切点弦方程。
点到直线距离
点P(x0,y0)到直线Ι:Ax+By+C=0的距离
d=|Ax0+By0+C|/√A^2+B^2
两平行线之间距离
若两平行直线的方程分别为:
Ax+By+C1=O Ax+By+C2=0 则
这两条平行直线间的距离d为:
d= 丨C1-C2丨/√(A^2+B^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询