在[0 2]区间求积分∫lnxdx?
1个回答
展开全部
原式=xlnx|(0→2)-∫(0→2)x*1/xdx
=xlnx|(0→2)-x|(0→2)
=2ln2-0-2+0 (因为lim(t→0+)tlnt=lim(t→0+)lnt/(1/t)=lim(t→0+)(1/t)/(-1/t^2)=lim(t→0+)-t=0)
=2ln2-2
=xlnx|(0→2)-x|(0→2)
=2ln2-0-2+0 (因为lim(t→0+)tlnt=lim(t→0+)lnt/(1/t)=lim(t→0+)(1/t)/(-1/t^2)=lim(t→0+)-t=0)
=2ln2-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算及...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询