已知tana,tanB是方程x^2-3x-3=0的两根,求tan(2a+2B)的值

 我来答
科创17
2022-08-12 · TA获得超过5930个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:178万
展开全部
由题意及韦达定理得
tanA+tanB=3
tanA*tanB= -3
所以
tan(A+B)=(tanA+tanB)/(1-tanA*tanB)=3/(1+3)=0.75
所以
tan(2A+2B)=2tan(A+B)/[1-(tan(A+B))^2]=2*0.75/(1-0.75^2)=24/7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式