1-x^2的不定积分怎么求?

 我来答
爱教育爱思考2021
高能答主

2022-12-14 · 我是教育培训达人,专注于教育科技信息分享
爱教育爱思考2021
采纳数:92 获赞数:35184

向TA提问 私信TA
展开全部

根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。

解:∫√(1-x^2)dx

令x=sint,那么

∫√(1-x^2)dx=∫√(1-(sint)^2)dsint

=∫cost*costdt

=1/2*∫(1+cos2t)dt

=1/2*∫1dt+1/2*∫cos2tdt

=t/2+1/4*sin2t+C

又sint=x,那么t=arcsinx,sin2t=2sintcost=2x*√(1-x^2)

所以∫√(1-x^2)dx=t/2+1/4*sin2t+C=1/2*arcsinx+1/2*x*√(1-x^2)+C

扩展资料:

1、换元积分法

(1)第一类换元法(即凑微分法)

通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+C 直接利用积分公式求出不定积分。

(2)三角换元法

通过三角函数之间的相互关系,进行三角换元,把元积分转换为三角函数的积分。

2、三角函数转换关系

1=(sinA)^2+(cosA)^2、(secA)^2=1+(tanA)^2

3、常见积分公式

∫mdx=mx+C、∫1/xdx=ln|x|+C、∫sinxdx=-cosx+C、∫e^xdx=e^x+C

参考资料来源:百度百科-不定积分

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式