计算 ∫lnx/xdx∫ (lnx/x) (dx)?

 我来答
户如乐9318
2022-10-29 · TA获得超过6657个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:139万
展开全部
∫ (lnx/x) (dx)
= ∫ (lnx) (d lnx),因为 d lnx = 1/x
可以 令 y = lnx
则原式 = ∫y (dy) = y^2/2 = 1/2 * (lnx)^2,9,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式