2个回答
展开全部
综述:
线性方程组可以写成AX=b 其中A是系数矩阵,x为所要解的列向量,b为等号右边的数所构成的列向量,等式两边同时乘以A-1(就是A的逆矩阵)可得,A-1AX=A-1b,即Ex=A-1b,即x=A-1B.,然后利用对增广矩阵【A|B】进行初等变换,变成【E|A-1B】,就解出了x。
定理:
(1)逆矩阵的唯一性。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。
(2)n阶方阵A可逆的充分必要条件是r(A)=m。
对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。
推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |