初二数学上册重点知识归纳

 我来答
爱读书的吕老师
2022-12-15 · TA获得超过4828个赞
知道小有建树答主
回答量:159
采纳率:0%
帮助的人:51.2万
展开全部

  初二上册重点知识点同学们总结过吗?如果没有,请来我这里瞧瞧。下面是由我为大家整理的“初二数学上册重点知识归纳”,仅供参考,欢迎大家阅读。

  初二数学上册重点知识归纳

   初二数学上册知识点总结第11-12章

  第十一章 全等三角形

  1.全等三角形的性质:全等三角形对应边相等、对应角相等.

  2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).

  3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

  4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上.

  5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

   第十二章 轴对称

  1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.

  2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

  3.角平分线上的点到角两边距离相等.

  4.线段垂直平分线上的任意一点到线段两个端点的距离相等.

  5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

  6.轴对称图形上对应线段相等、对应角相等.

  7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点.

  8.点(x,y)关于x轴对称的点的坐标为(x,-y)

  点(x,y)关于y轴对称的点的坐标为(-x,y)

  点(x,y)关于原点轴对称的点的坐标为(-x,-y)

  9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

  等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.

  10.等腰三角形的判定:等角对等边.

  11.等边三角形的三个内角相等,等于60°,

  12.等边三角形的判定: 三个角都相等的三角形是等腰三角形.

  有一个角是60°的等腰三角形是等边三角形

  有两个角是60°的三角形是等边三角形.

  13.直角三角形中,30°角所对的直角边等于斜边的一半.

  14.直角三角形斜边上的中线等于斜边的一半

  初二数学上册知识点总结第13-14章

   第十三章 实数

  ※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.

  ※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.

  ※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.

  ※正数的立方根是正数;0的立方根是0;负数的立方根是负数.

  数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

   第十四章 一次函数

  1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).

  2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.

  3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.

  4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.

  5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.

  6.已知两点坐标求函数解析式(待定系数法求函数解析式):

  把两点带入函数一般式列出方程组

  求出待定系数

  把待定系数值再带入函数一般式,得到函数解析式

  7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

  初二数学上册知识点总结第15章

   第十五章 整式的乘除与因式分解

  1.同底数幂的乘法

  ※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  ②指数是1时,不要误以为没有指数;

  ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  ④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

  ⑤公式还可以逆用: (m、n均为正整数)

  2.幂的乘方与积的乘方

  ※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

  ※2. .

  ※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

  如将(-a)3化成-a3

  ※4.底数有时形式不同,但可以化成相同.

  ※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

  ※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).

  ※7.幂的乘方与积乘方法则均可逆向运用.

  3. 整式的乘法

  ※(1). 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.

  单项式乘法法则在运用时要注意以下几点:

  ①积的系数等于各因式系数积,先确定符号,再计算绝对值.这时容易出现的错误的是,将系数相乘与指数相加混淆;

  ②相同字母相乘,运用同底数的乘法法则;

  ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  ④单项式乘法法则对于三个以上的单项式相乘同样适用;

  ⑤单项式乘以单项式,结果仍是一个单项式.

  ※(2).单项式与多项式相乘

  单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.

  单项式与多项式相乘时要注意以下几点:

  ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

  ②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

  ③在混合运算时,要注意运算顺序.

  ※(3).多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.

  多项式与多项式相乘时要注意以下几点:

  ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  ②多项式相乘的结果应注意合并同类项;

  ③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积.对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

  4.平方差公式

  ¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

  ※即 .

  ¤其结构特征是:

  ①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

  ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差.

  5.完全平方公式

  ¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

  ¤即 ;

  ¤口决:首平方,尾平方,2倍乘积在中央;

  ¤2.结构特征:

  ①公式左边是二项式的完全平方;

  ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍.

  ¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误.

  添括号法则:添正不变号,添负各项变号,去括号法则同样

  6. 同底数幂的除法

  ※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

  ※2. 在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

  ②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

  ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

  ④运算要注意运算顺序.

  7.整式的除法

  ¤1.单项式除法单项式

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  ¤2.多项式除以单项式

  多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号.

  8. 分解因式

  ※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

  ※2. 因式分解与整式乘法是互逆关系.

  因式分解与整式乘法的区别和联系:

  (1)整式乘法是把几个整式相乘,化为一个多项式;

  (2)因式分解是把一个多项式化为几个因式相乘.

  拓展阅读:初二学生怎样提高数学成绩

  1、聪明和成绩之间没有必然的联系,很多比你成绩好的人,智商肯定没你高。学习成绩好不单纯是由智商决定的,它有很多因素,努力程度是一方面,更重要的是方法!有了事半功倍的方法,不用每天熬夜,不用搞题海战术。

  2、告诉你的家人不要用过高的期望值给你增加压力,否则你会不堪重负。我当然知道每个家长都盼望着自己的孩子能够考上北大清华,但并不是所有孩子都有那种能力。即使有那样的潜力,没有被很好的挖掘出来,最终也是被埋没了。

  3、家长唠叨他们的,你别受影响,按照你的计划和你的目标.这个年代是靠本事靠实力吃饭,不是靠什么高学历高文凭,那些只说明书呆子程度更重而已。

  4、结合我的体会说说提高成绩的方法吧。(1)首先要有明确的计划,是头脑里清晰的那种计划,不一定非要写在纸上.比如今天我要复习哪些内容,解决哪些不明白的地方,要背过多少个单词,做几套模拟卷子.(2)要善于总结,我觉得我中考之前做的题目并没有有的人那么多,但是我把做过的卷子里的错题和重点题经典题标出来,反反复复的琢磨研究.最终达到看一眼就知道是哪种类型了.(3)善于揣摩出题人的思路,这可能有一点难,但并不是不可能,把最近几年的真题反复研究几遍,重点就能看出来一些.重点永远是重点,多复习几遍没坏处 (4)对自己合理的期望值,不要太高,不要寄希望于什么超常发挥,那种情况的极其罕见的.也不用担心会发挥失常,那也是罕见的。只要平和去面对就行了。

  5、每个人的人生都只有他自己能够规划,别人是无法替代的,因为别人永远不可能完全了解你的思想你的兴趣。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式