如何从平面几何的角度分析聚点和边界点的定义?
展开全部
1、聚点和边界点的定义:
2、从平面几何上分析:
(1)第一种情形:
聚点:设C1为不含边界的点的集合,即sqrt(x^2+y^2)<R,任取C1边界上一点A的去心邻域,Uo(A,r),无论r多么小,C2中总有属于C1的点,称A为C1的聚点。
边界点:设C1为不含边界的点的集合,即sqrt(x^2+y^2)<R,任取C1边界上一点A的去心邻域,Uo(A,r),无论r多么小,C2中既有属于C1的点,又含不属于C1的点,称A为C1的边界点。
(2)第二种情形:
聚点:设C1为不含边界的点的集合,即sqrt(x^2+y^2)<R,任取C1内一点A的去心邻域,Uo(A,r),无论r多么小,无论A点多么靠近边界,A不在边界上,C2中总有属于C1的点,称A为C1的聚点
边界点:设C1为不含边界的点的集合,即sqrt(x^2+y^2)<R,任取C1内一点A的去心领域,Uo(A,r),无论r多么小,无论A点多么靠近边界,A不在边界上,根据定义C2中没有不属于C1的点,所以A不是C1的边界点
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询