初二数学下册期末试题及答案
1个回答
展开全部
以下是 为大家整理的关于初二数学下册期末试题及答案的文章,供大家学习参考。
一、选择题
1. 当分式 有意义时,字母 应满足( )
A. B. C. D.
2.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -3x 的图像上,则( )
A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y1>y3>y2
3.如图,在直角梯形 中, ,点 是边 的中点,若 ,则梯形 的面积为( )
A. B. C. D.25
4.函数 的图象经过点(1,-2),则k的值为( )
A. B. C. 2 D. -2
5.如果矩形的面积为6cm2,那么它的长 cm与宽 cm之间的函数关系用图象表示大致( )
A B C D
6.顺次连结等腰梯形各边中点所得四边形是( )
A.梯形 B.菱形 C.矩形 D.正方形
7.若分式 的值为0,则x的值为( )
A.3 B.3或-3 C.-3 D.0
8.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的( )
A. 倍 B. 倍 C. 倍 D. 倍、
9.如图,把一张平行四边形纸片ABCD沿BD对折。使C点落在E处,BE与AD相交于点D.若∠DBC=15°,则∠BOD=
A.130 ° B.140 ° C.150 ° D.160°
10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( )
A.4 B.5 C.6 D.7
二、填空题
11.边长为7,24,25的△ABC内有一点P到三边距离相等,则这个距离为
12. 如果函数y= 是反比例函数,那么k=____, 此函数的解析式是__ ______
13.已知 - =5,则 的值是
14.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果如下:−1.2,0.1,−8.3,1.2,10.8,−7.0
这6名男生中身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)
15.如图,点P是反比例函数 上的一点,PD⊥ 轴于点D,则△POD的面积为
三、计算问答题
16.先化简,再求值: ,其中x=2
17.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
捐款(元) 10 15 30
50 60
人数 3 6 11
13 6
因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.
(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.
(2)该班捐款金额的众数、中位数分别是多少?
18.已知如图:矩形ABCD的边BC在X轴上,E为对角线BD的中点,点B、D的坐标分别为
B(1,0),D(3,3),反比例函数y= 的图象经过A点,
(1)写出点A和点E的坐标;
(2)求反比例函数的解析式;
(3)判断点E是否在这个函数的图象上
19.已知:CD为 的斜边上的高,且 , , , (如图)。求证:
参考答案
1.D 2.B 3. A 4.D 5.C 6.B 7.C 8.C 9.C 10.B
11.3
12. -1或 y=-x-1或y=
13.1
14.19.1cm,164.3cm
15.1
16. 2x-1 ,3
17.解:(1) 被污染处的人数为11人。设被污染处的捐款数为 元,则
11 +1460=50×38
解得 =40
答:(1)被污染处的人数为11人,被污染处的捐款数为40元.
(2)捐款金额的中位数是40元,捐款金额的众数是50元.
18.解:(1)A(1,3),E(2,32 )
(2)设所求的函数关系式为y=kx
把x=1,y=3代入, 得:k=3×1=3
∴ y=3x 为所求的解析式
(3)当x=2时,y=32
∴ 点E(2,32 )在这个函数的图象上。
19.证明:左边
∵ 在直角三角形中,
又∵ 即
∴ 右边
即证明出:
人教版八年级下册数学期末测试题二
一、细心填一填,一锤定音(每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并将正确选项填入答题卡中)
1、同学们都知道,蜜蜂建造的蜂房既坚固又省料。那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m。此数据用科学计数法表示为( )
A、 B、 C、 D、
2、若一个四边形的两条对角线相等,则称这个四边形为对角线四边形。下列图形不是对角线四边形的是( )
A、平行四边形 B、矩形 C、正方形 D、等腰梯形
3、某地连续10天的气温统计如下:
气温(℃) 22 23 24 25
天数 1 2 3 4
这组数据的中位数和众数分别是( )
A、24,25 B、24.5,25 C、25,24 D、23.5,24
4、下列运算中,正确的是( )
A、 B、 C、 D、
5、下列各组数中以a,b,c为边的三角形不是Rt△的是 ( )
A、a=2,b=3, c=4 B、a=5, b=12, c=13
C、a=6, b=8, c=10 D、a=3, b=4, c=5
6、一组数据 0,-1,5,x,3,-2的极差是8,那么x的值为( )
A、6 B、7 C、6或-3 D、7或-3
7、已知点(3,-1)是双曲线 上的一点,则下列各点不在该双曲线上的是( )
A、 B、 C、(-1,3) D、 (3,1)
8、下列说法正确的是( )
A、一组数据的众数、中位数和平均数不可能是同一个数
B、一组数据的平均数不可能与这组数据中的任何数相等
C、一组数据的中位数可能与这组数据的任何数据都不相等
D、众数、中位数和平均数从不同角度描述了一组数据的波动大小
9、如图(1),已知矩形 的对角线 的长为 ,连结各边中点 、 、 、 得四边形 ,则四边形 的周长为( )
A、 B、 C、 D、
10、若关于x的方程 无解,则m的取值为( )
A、-3 B、-2 C、 -1 D、3
11、在正方形ABCD中,对角线AC=BD=12cm,点P为AB边上的任一点,则点P到AC、BD的距离之和为( )
A、6cm B、7cm C、 cm D、 cm
12、如图(2)所示,矩形ABCD的面积为10 ,它的两条对角线交于点 ,以AB、 为邻边作平行四边形 ,平行四边形 的对角线交于点 ,同样以AB、 为邻边作平行四边形 ,……,依次类推,则平行四边形 的面积为( )
A、1 B、2 C、 D、
二、细心填一填,相信你填得又快又准
13、若反比例函数 的图像在每个象限内y随x的增大而减小,则k的值可以为_______(只需写出一个符合条件的k值即可)
14、某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为 分, 分, ,则成绩较为整齐的是________(填“甲班”或“乙班”)。
15、如图(3)所示,在□ABCD中,E、F分别为AD、BC边上的一点,若添加一个条件_____________,则四边形EBFD为平行四边形。
16、如图(4),是一组数据的折线统计图,这组数据的平均数是 ,极差是 .
17、如图(5)所示,有一直角梯形零件ABCD,AD∥BC,斜腰DC=10cm,∠D=120°,则该零件另一腰AB的长是_______cm;
18、如图(6),四边形 是周长为 的菱形,点 的坐标是 ,则点 的坐标为 .
19、如图(7)所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有__________(只填序号)。
20、任何一个正整数n都可以进行这样的分解: (s、t是正整数,且s≤t),如果 在n的所有这种分解中两因数之差的绝对值最小,我们就称 是分解,并规定 。例如:18可以分解成1×18,2×9,3×6,这是就有 。结合以上信息,给出下列 的说法:① ;② ;③ ;④若n是一个完全平方数,则 ,其中正确的说法有_________.(只填序号)
三、开动脑筋,你一定能做对(解答应写出文字说明、证明过程或推演步骤)
21、解方程
22、先化简,再求值 ,其中x=2。
23、某校八年级(1)班50名学生参加2007年济宁市数学质量监测考试,全班学生的成绩统计如下表:
成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 94
人数 1 2 3 5 4 5 3 7 8 4 3 3 2
请根据表中提供的信息解答下列问题:
(1)该班学生考试成绩的众数和中位数分别是多少?
(2)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中偏上水平?试说明理由.
24、如图(8)所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在
图(8-1)、图(8-2)、图(8-3)中分别画出满足以下要求的图形.(用阴影表示)
(1)使所得图形成为轴对称图形,而不是中心对称图形;
(2)使所得图形成为中心对称图形,而不是轴对称图形;
(3)使所得图形既是轴对称图形,又是中心对称图形.
25、某青少年研究机构随机调查了某校100名学生寒假零花钱的数量(钱数取整数元),以便研究分析并引导学生树立正确的消费观.现根据调查数据制成了如下图所示的频数分布表.
(1)请将频数分布表和频数分布直方图补充完整;
(2)研究认为应对消费150元以上的学生提出勤俭节约合理消费的建议.试估计应对该校1200名学生中约多少名学生提出该项建议?
(3)你从以下图表中还能得出那些信息?(至少写出一条)
分组(元) 组中值(元) 频数 频率
0.5~50.5 25.5 0.1
50.5~100.5 75.5 20 0.2
100.5~150.5
150.5~200.5 175.5 30 0.3
200.5~250.5 225.5 10 0.1
250.5~300.5 275.5 5 0.05
合计 100
26、如图所示,一次函数 的图像与反比例函数 的图像交于M 、N两点。
(1)根据图中条件求出反比例函数和一次函数的解析式;
(2)当x为何值时一次函数的值大于反比例函数的值?
27、 如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm。求CE的长?
28、如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24 cm,BC=26 cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动。点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动。
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,四边形PQCD是等腰梯形?
参考答案
一、选择题(3分×12=36分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B A A D A C D C A B A D
二、填空题(3分×8=24分)
13、k>4的任何值(答案不); 14、___甲班___; 15、答案不; 16、 46.5 , 31 ;
17、 cm; 18、 (0,3) ; 19、__①③⑤__; 20、 __①③④__.
三、开动脑筋,你一定能做对(共60分)
21、(6分)解:方程两边同乘 得:
解得:
检验:把 代入 =0
所以-2是原方程的增根, 原方程无解.
22、(6分)解: 原式=
把x=2 代入原式=8
23、(8分)(1)众数为88,中位数为86;
(2)不能,理由略.
24、(6分)
25、(9分)
(1)略
(2) (名)
(3)略
26、(8分)解: (1)反比例函数解析式为:
一次函数的解析式为:
(2) 当 或 时一次函数的值大于反比例函数的值.
27、(8分)CE=3
28、(9分)(1)(3分)设经过 ,四边形PQCD为平行四边形,即PD=CQ,
所以 得
(2)(3分) 设经过 ,四边形PQBA为矩形, 即AP=BQ,所以 得
(3)(3分) 设经过 ,四边形PQCD是等腰梯形.(过程略)
人教版八年级下册数学期末测试题三
一、选择题(每题2分,共24分)
1、下列各式中,分式的个数有( )
、 、 、 、 、 、 、
A、2个 B、3个 C、4个 D、5个
2、如果把 中的x和y都扩大5倍,那么分式的值( )
A、扩大5倍 B、不变 C、缩小5倍 D、扩大4倍
3、已知正比例函数y=k1x(k1≠0)与反比例函数y= (k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是
A. (2,1) B. (-2,-1) C. (-2,1) D. (2,-1)
4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为
A.10米 B.15米 C.25米 D.30米
5、一组对边平行,并且对角线互相垂直且相等的四边形是( )
A、菱形或矩形 B、正方形或等腰梯形 C、矩形或等腰梯形 D、菱形或直角梯形
6、把分式方程 的两边同时乘以(x-2), 约去分母,得( )
A.1-(1-x)=1 B.1+(1-x)=1 C.1-(1-x)=x-2 D.1+(1-x)=x-2
7、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( )
A、直角三角形 B、锐角三角形 C、钝角三角形 D、 以上答案都不对
(第7题) (第8题) (第9题)
8、如图,等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是 ( )
A、 B、 C、 D、
9、如图,一次函数与反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是( )
A、x2 C、-12 D、x<-1,或0
10、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为 , 。下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。其中正确的共有( ).
分数 50 60 70 80 90 100
一、选择题
1. 当分式 有意义时,字母 应满足( )
A. B. C. D.
2.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -3x 的图像上,则( )
A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y1>y3>y2
3.如图,在直角梯形 中, ,点 是边 的中点,若 ,则梯形 的面积为( )
A. B. C. D.25
4.函数 的图象经过点(1,-2),则k的值为( )
A. B. C. 2 D. -2
5.如果矩形的面积为6cm2,那么它的长 cm与宽 cm之间的函数关系用图象表示大致( )
A B C D
6.顺次连结等腰梯形各边中点所得四边形是( )
A.梯形 B.菱形 C.矩形 D.正方形
7.若分式 的值为0,则x的值为( )
A.3 B.3或-3 C.-3 D.0
8.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的( )
A. 倍 B. 倍 C. 倍 D. 倍、
9.如图,把一张平行四边形纸片ABCD沿BD对折。使C点落在E处,BE与AD相交于点D.若∠DBC=15°,则∠BOD=
A.130 ° B.140 ° C.150 ° D.160°
10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( )
A.4 B.5 C.6 D.7
二、填空题
11.边长为7,24,25的△ABC内有一点P到三边距离相等,则这个距离为
12. 如果函数y= 是反比例函数,那么k=____, 此函数的解析式是__ ______
13.已知 - =5,则 的值是
14.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果如下:−1.2,0.1,−8.3,1.2,10.8,−7.0
这6名男生中身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)
15.如图,点P是反比例函数 上的一点,PD⊥ 轴于点D,则△POD的面积为
三、计算问答题
16.先化简,再求值: ,其中x=2
17.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
捐款(元) 10 15 30
50 60
人数 3 6 11
13 6
因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.
(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.
(2)该班捐款金额的众数、中位数分别是多少?
18.已知如图:矩形ABCD的边BC在X轴上,E为对角线BD的中点,点B、D的坐标分别为
B(1,0),D(3,3),反比例函数y= 的图象经过A点,
(1)写出点A和点E的坐标;
(2)求反比例函数的解析式;
(3)判断点E是否在这个函数的图象上
19.已知:CD为 的斜边上的高,且 , , , (如图)。求证:
参考答案
1.D 2.B 3. A 4.D 5.C 6.B 7.C 8.C 9.C 10.B
11.3
12. -1或 y=-x-1或y=
13.1
14.19.1cm,164.3cm
15.1
16. 2x-1 ,3
17.解:(1) 被污染处的人数为11人。设被污染处的捐款数为 元,则
11 +1460=50×38
解得 =40
答:(1)被污染处的人数为11人,被污染处的捐款数为40元.
(2)捐款金额的中位数是40元,捐款金额的众数是50元.
18.解:(1)A(1,3),E(2,32 )
(2)设所求的函数关系式为y=kx
把x=1,y=3代入, 得:k=3×1=3
∴ y=3x 为所求的解析式
(3)当x=2时,y=32
∴ 点E(2,32 )在这个函数的图象上。
19.证明:左边
∵ 在直角三角形中,
又∵ 即
∴ 右边
即证明出:
人教版八年级下册数学期末测试题二
一、细心填一填,一锤定音(每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并将正确选项填入答题卡中)
1、同学们都知道,蜜蜂建造的蜂房既坚固又省料。那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m。此数据用科学计数法表示为( )
A、 B、 C、 D、
2、若一个四边形的两条对角线相等,则称这个四边形为对角线四边形。下列图形不是对角线四边形的是( )
A、平行四边形 B、矩形 C、正方形 D、等腰梯形
3、某地连续10天的气温统计如下:
气温(℃) 22 23 24 25
天数 1 2 3 4
这组数据的中位数和众数分别是( )
A、24,25 B、24.5,25 C、25,24 D、23.5,24
4、下列运算中,正确的是( )
A、 B、 C、 D、
5、下列各组数中以a,b,c为边的三角形不是Rt△的是 ( )
A、a=2,b=3, c=4 B、a=5, b=12, c=13
C、a=6, b=8, c=10 D、a=3, b=4, c=5
6、一组数据 0,-1,5,x,3,-2的极差是8,那么x的值为( )
A、6 B、7 C、6或-3 D、7或-3
7、已知点(3,-1)是双曲线 上的一点,则下列各点不在该双曲线上的是( )
A、 B、 C、(-1,3) D、 (3,1)
8、下列说法正确的是( )
A、一组数据的众数、中位数和平均数不可能是同一个数
B、一组数据的平均数不可能与这组数据中的任何数相等
C、一组数据的中位数可能与这组数据的任何数据都不相等
D、众数、中位数和平均数从不同角度描述了一组数据的波动大小
9、如图(1),已知矩形 的对角线 的长为 ,连结各边中点 、 、 、 得四边形 ,则四边形 的周长为( )
A、 B、 C、 D、
10、若关于x的方程 无解,则m的取值为( )
A、-3 B、-2 C、 -1 D、3
11、在正方形ABCD中,对角线AC=BD=12cm,点P为AB边上的任一点,则点P到AC、BD的距离之和为( )
A、6cm B、7cm C、 cm D、 cm
12、如图(2)所示,矩形ABCD的面积为10 ,它的两条对角线交于点 ,以AB、 为邻边作平行四边形 ,平行四边形 的对角线交于点 ,同样以AB、 为邻边作平行四边形 ,……,依次类推,则平行四边形 的面积为( )
A、1 B、2 C、 D、
二、细心填一填,相信你填得又快又准
13、若反比例函数 的图像在每个象限内y随x的增大而减小,则k的值可以为_______(只需写出一个符合条件的k值即可)
14、某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为 分, 分, ,则成绩较为整齐的是________(填“甲班”或“乙班”)。
15、如图(3)所示,在□ABCD中,E、F分别为AD、BC边上的一点,若添加一个条件_____________,则四边形EBFD为平行四边形。
16、如图(4),是一组数据的折线统计图,这组数据的平均数是 ,极差是 .
17、如图(5)所示,有一直角梯形零件ABCD,AD∥BC,斜腰DC=10cm,∠D=120°,则该零件另一腰AB的长是_______cm;
18、如图(6),四边形 是周长为 的菱形,点 的坐标是 ,则点 的坐标为 .
19、如图(7)所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有__________(只填序号)。
20、任何一个正整数n都可以进行这样的分解: (s、t是正整数,且s≤t),如果 在n的所有这种分解中两因数之差的绝对值最小,我们就称 是分解,并规定 。例如:18可以分解成1×18,2×9,3×6,这是就有 。结合以上信息,给出下列 的说法:① ;② ;③ ;④若n是一个完全平方数,则 ,其中正确的说法有_________.(只填序号)
三、开动脑筋,你一定能做对(解答应写出文字说明、证明过程或推演步骤)
21、解方程
22、先化简,再求值 ,其中x=2。
23、某校八年级(1)班50名学生参加2007年济宁市数学质量监测考试,全班学生的成绩统计如下表:
成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 94
人数 1 2 3 5 4 5 3 7 8 4 3 3 2
请根据表中提供的信息解答下列问题:
(1)该班学生考试成绩的众数和中位数分别是多少?
(2)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中偏上水平?试说明理由.
24、如图(8)所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在
图(8-1)、图(8-2)、图(8-3)中分别画出满足以下要求的图形.(用阴影表示)
(1)使所得图形成为轴对称图形,而不是中心对称图形;
(2)使所得图形成为中心对称图形,而不是轴对称图形;
(3)使所得图形既是轴对称图形,又是中心对称图形.
25、某青少年研究机构随机调查了某校100名学生寒假零花钱的数量(钱数取整数元),以便研究分析并引导学生树立正确的消费观.现根据调查数据制成了如下图所示的频数分布表.
(1)请将频数分布表和频数分布直方图补充完整;
(2)研究认为应对消费150元以上的学生提出勤俭节约合理消费的建议.试估计应对该校1200名学生中约多少名学生提出该项建议?
(3)你从以下图表中还能得出那些信息?(至少写出一条)
分组(元) 组中值(元) 频数 频率
0.5~50.5 25.5 0.1
50.5~100.5 75.5 20 0.2
100.5~150.5
150.5~200.5 175.5 30 0.3
200.5~250.5 225.5 10 0.1
250.5~300.5 275.5 5 0.05
合计 100
26、如图所示,一次函数 的图像与反比例函数 的图像交于M 、N两点。
(1)根据图中条件求出反比例函数和一次函数的解析式;
(2)当x为何值时一次函数的值大于反比例函数的值?
27、 如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm。求CE的长?
28、如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24 cm,BC=26 cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动。点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动。
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,四边形PQCD是等腰梯形?
参考答案
一、选择题(3分×12=36分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B A A D A C D C A B A D
二、填空题(3分×8=24分)
13、k>4的任何值(答案不); 14、___甲班___; 15、答案不; 16、 46.5 , 31 ;
17、 cm; 18、 (0,3) ; 19、__①③⑤__; 20、 __①③④__.
三、开动脑筋,你一定能做对(共60分)
21、(6分)解:方程两边同乘 得:
解得:
检验:把 代入 =0
所以-2是原方程的增根, 原方程无解.
22、(6分)解: 原式=
把x=2 代入原式=8
23、(8分)(1)众数为88,中位数为86;
(2)不能,理由略.
24、(6分)
25、(9分)
(1)略
(2) (名)
(3)略
26、(8分)解: (1)反比例函数解析式为:
一次函数的解析式为:
(2) 当 或 时一次函数的值大于反比例函数的值.
27、(8分)CE=3
28、(9分)(1)(3分)设经过 ,四边形PQCD为平行四边形,即PD=CQ,
所以 得
(2)(3分) 设经过 ,四边形PQBA为矩形, 即AP=BQ,所以 得
(3)(3分) 设经过 ,四边形PQCD是等腰梯形.(过程略)
人教版八年级下册数学期末测试题三
一、选择题(每题2分,共24分)
1、下列各式中,分式的个数有( )
、 、 、 、 、 、 、
A、2个 B、3个 C、4个 D、5个
2、如果把 中的x和y都扩大5倍,那么分式的值( )
A、扩大5倍 B、不变 C、缩小5倍 D、扩大4倍
3、已知正比例函数y=k1x(k1≠0)与反比例函数y= (k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是
A. (2,1) B. (-2,-1) C. (-2,1) D. (2,-1)
4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为
A.10米 B.15米 C.25米 D.30米
5、一组对边平行,并且对角线互相垂直且相等的四边形是( )
A、菱形或矩形 B、正方形或等腰梯形 C、矩形或等腰梯形 D、菱形或直角梯形
6、把分式方程 的两边同时乘以(x-2), 约去分母,得( )
A.1-(1-x)=1 B.1+(1-x)=1 C.1-(1-x)=x-2 D.1+(1-x)=x-2
7、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( )
A、直角三角形 B、锐角三角形 C、钝角三角形 D、 以上答案都不对
(第7题) (第8题) (第9题)
8、如图,等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是 ( )
A、 B、 C、 D、
9、如图,一次函数与反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是( )
A、x2 C、-12 D、x<-1,或0
10、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为 , 。下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。其中正确的共有( ).
分数 50 60 70 80 90 100
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询