如果数列极限存在,那么函数在什么时候存在极限?

 我来答
亦是如此
高粉答主

2023-03-09 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544596

向TA提问 私信TA
展开全部

在n趋于无穷大的时候,(1+1/n)^n就趋于一个无理数,而且这个数在初等数学中是没有出现的,就将其定义为e,而e约等于2.71828,是一个无限不循环小数,为超越数。

lim n→0,(1 + 1/n)^n。

=e^lim n→0,nln(1+1/n)。

=e^lim n→0,1/n*ln(1+1/n)。

=(洛)e^lim n→0,1/1+1/n。

=e^0。

=1。

数列极限标准定义:

对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。

函数极限标准定义:设函数f(x),|x|大于某一正数时有定义,若存在常数A,对于任意ε>0,总存在正整数X,使得当x>X时,|f(x)-A|<ε成立,那么称A是函数f(x)在无穷大处的极限。

设函数f(x)在x0处的某一去心邻域内有定义,若存在常数A,对于任意ε>0,总存在正数δ,使得当|x-xo|<δ时,|f(x)-A|<ε成立,那么称A是函数f(x)在x0处的极限。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式