函数二阶可导的意义是什么?

 我来答
小采姐姐
高能答主

2023-03-31 · 探索社会,乐得其所!
小采姐姐
采纳数:3683 获赞数:136166

向TA提问 私信TA
展开全部

二阶可导和二阶连续可导的区别是在函数方面都有二阶导数,但是对于函数二阶可导,二阶导数的连续性没有办法确定,所以说可能会有间断点。

对于函数二届连续可导,二届函数就是连续,这种情况下说明二阶导函数是存在的,另外二阶导函数也是连续的。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

性质分析

函数二阶可导说明该函数在某个数值阶段存在一个最大值或者一个最小值。二阶导数可以反映图像的凹凸,二阶导数大于0,图像为凹;二阶导数小于0,图像为凸;二阶导数等于0,不凹不凸。

二阶导数是原函数导数的导数,是将原函数进行二次求导。一般函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f‘(x)的导数叫作函数y=f(x)的二阶导数。二阶导数的意义是观察切线 斜率变化的速度。观察函数的凹凸性,函数是向上突起的,还是向下突起的。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式