怎么用二重积分计算不定积分?
1个回答
展开全部
使用二重积分与两边夹法则积出e的x^2次方从0到正无穷是二分之根号π,根据e的x^2是偶函数得出根号π。
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]
=∫∫e^(-x^2-y^2)dxdy
转化成极坐标
=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]
=2π*[(-1/2)e^(-p^2)|(0-+无穷)]
=2π*1/2
=π
∫e^(-x^2)dx=I^(1/2)=√π
不定积分的公式:
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询