如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的...
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE?DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.
展开
1个回答
展开全部
(1)证明:连接OC.
∵PC=PF,OA=OC,
∴∠PCA=∠PFC,∠OCA=∠OAC,
∵∠PFC=∠AFH,DE⊥AB,
∴∠AHF=90°,
∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°,
∴PC是⊙O的切线.
(2)解:点D在劣弧AC中点位置时,才能使AD2=DE?DF,理由如下:
连接AE.
∵点D在劣弧AC中点位置,
∴∠DAF=∠DEA,
∵∠ADE=∠ADE,
∴△DAF∽△DEA,
∴AD:ED=FD:AD,
∴AD2=DE?DF.
(3)解:连接OD交AC于G.
∵OH=1,AH=2,
∴OA=3,即可得OD=3,
∴DH=
=
=2
.
∵点D在劣弧AC中点位置,
∴AC⊥DO,
∴∠OGA=∠OHD=90°,
在△OGA和△OHD中,
,
∴△OGA≌△OHD(AAS),
∴AG=DH,
∴AC=4
.
∵PC=PF,OA=OC,
∴∠PCA=∠PFC,∠OCA=∠OAC,
∵∠PFC=∠AFH,DE⊥AB,
∴∠AHF=90°,
∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°,
∴PC是⊙O的切线.
(2)解:点D在劣弧AC中点位置时,才能使AD2=DE?DF,理由如下:
连接AE.
∵点D在劣弧AC中点位置,
∴∠DAF=∠DEA,
∵∠ADE=∠ADE,
∴△DAF∽△DEA,
∴AD:ED=FD:AD,
∴AD2=DE?DF.
(3)解:连接OD交AC于G.
∵OH=1,AH=2,
∴OA=3,即可得OD=3,
∴DH=
OD2?OH2 |
8 |
2 |
∵点D在劣弧AC中点位置,
∴AC⊥DO,
∴∠OGA=∠OHD=90°,
在△OGA和△OHD中,
|
∴△OGA≌△OHD(AAS),
∴AG=DH,
∴AC=4
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询