已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(√3,0)。(1)求双曲线C的方程;(2)

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(√3,0)。(1)求双曲线C的方程;(2)若直线l:y=kx+√2与双曲线C恒有两个不同的交点A和B,且OA·OB... 已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(√3,0)。(1)求双曲线C的方程;(2)若直线l:y=kx+√2与双曲线C恒有两个不同的交点A和B,且OA·OB>2(其中O为原点),求k的取值范围。 展开
 我来答
absurd710
2015-02-13 · TA获得超过2063个赞
知道小有建树答主
回答量:1046
采纳率:0%
帮助的人:758万
展开全部
(1)由题意得:
c=2, a=√3
∴b=√(c²-a²)=1
∴方程为:x²/3 - y^2=1
(2)设A(x1,y1)B(x2,y2),
将 y=kx+√2代入双曲线方程
得(1-3k^2)x^2-6√2kx-9=0
Δ=72k^2+36(1-3k^2)>0,得k^2<1且k^2≠1/3(二次项系数不为0)
由韦达定理得:
x1+x2=(6√2k)/(1-3k^2)
x1x2=-9/(1-3k^2)
OA·OB=x1x2+y1y2=x1x2+(kx1+√2)(kx2+√2)=(1+k^2)x1x2+√2k(x1+x2)+2 =(3k^2+7)/(3k^2-1)>2
得1/3<k^2<3
综上,得1/3<k^2<1,
k∈(-1,-√3/3)∪(√3/3,1)

望采纳
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式