3个回答
展开全部
复合函数求导法。
dy/dx =ln[(2x-1)/(x+1)][(2x-1)/(x+1)]'
=[3/(x+1)^2]ln[(2x-1)/(x+1)]
dy/dx =ln[(2x-1)/(x+1)][(2x-1)/(x+1)]'
=[3/(x+1)^2]ln[(2x-1)/(x+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
dy/dx
= d(f[(2x-1)/(x+1)])/dx
={f'[(2x-1)/(x+1)]}{(2x-1)-2(x+1)}/(x+1)^2
=-3{f'[(2x-1)/(x+1)]}/(x+1)^2
f'(x) = lnx
f'[(2x-1)/(x+1)] = ln{ (2x-1)/(x+1) }
dy/dx
=-3ln{ (2x-1)/(x+1) }/(x+1)^2
= d(f[(2x-1)/(x+1)])/dx
={f'[(2x-1)/(x+1)]}{(2x-1)-2(x+1)}/(x+1)^2
=-3{f'[(2x-1)/(x+1)]}/(x+1)^2
f'(x) = lnx
f'[(2x-1)/(x+1)] = ln{ (2x-1)/(x+1) }
dy/dx
=-3ln{ (2x-1)/(x+1) }/(x+1)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询